DOI QR코드

DOI QR Code

Ultimate strength of rectangular concrete-filled steel tubular (CFT) stub columns under axial compression

  • Huang, Yan-Sheng (Department of Civil Engineering, South China University of Technology) ;
  • Long, Yue-Ling (Department of Civil Engineering, South China University of Technology) ;
  • Cai, Jian (Department of Civil Engineering, South China University of Technology)
  • Received : 2007.12.05
  • Accepted : 2008.03.20
  • Published : 2008.04.25

Abstract

A method is proposed to estimate the ultimate strength of rectangular concrete-filled steel tubular (CFT) stub columns under axial compression. The ultimate strength of concrete core is determined by using the conception of the effective lateral confining pressure and a failure criterion of concrete under true triaxial compression, which takes into account the difference between the lateral confining pressure provided by the broad faces of the steel tube and that provided by the narrow faces of the steel tube. The longitudinal steel strength of broad faces and that of the narrow faces of the steel tube are calculated respectively due to that buckling tends to occur earlier and more extensively on the broader faces. Finally, the proposed method is verified with experimental results. Corresponding values of ultimate strength calculated by ACI (2005), AISC (1999) and GJB4142-2000 are given respectively for comparison. It is found from comparison that the proposed method shows a good agreement with the experimental results.

Keywords

References

  1. American Concrete Institute (ACI) (2005), "Building Code Requirements for Structural Concrete", American Concrete Institute, Detroit.
  2. American Institute of Steel Construction (AISC) (1999). "Load and resistance factor design specification (lrfd) for structural steel buildings", American Institute of Steel Construction, Inc, Chicago.
  3. British Standards Institution (2004), Eurocode 4, Design of Composite Steel and Concrete Structures, Part 1.1: General Rules and Rules for Building DD-ENV 1994-1-1, London.
  4. Furlong, R. W. (1967), "Strength of steel-encased concrete beam-columns", J. Struct. Div., ASCE 93(ST5), 113-124.
  5. Furlong, R. W. (1968), "Design of steel-encased concrete beam-columns", J. Struct. Div., ASCE 94(ST1), 267-281.
  6. GB50010-2002(2002), Code for Design of Concrete Structures, Beijing, China [in Chinese].
  7. Ge, H.B. and Usami, T. (1994), "Strength analysis of concrete filled thin-walled steel box columns", J. Constr. Steel Res, 30(3), 259-281. https://doi.org/10.1016/0143-974X(94)90003-5
  8. GJB4142-2000 (2001), Technical Specifications for Early-strength Model Composite Structures. Beijing, China [in Chinese].
  9. Han, Lin-Hai, (2002), "Tests on stub columns of concrete-filled RHS sections", J. Constr. Steel Res, 58(3), 353-372. https://doi.org/10.1016/S0143-974X(01)00059-1
  10. Kang, Hyun-Sik, Lim, Seo-Hyung, Moon, Tae-Sup and Sitiemer, S. F.(2005), "Experimental study on the behavior of CFT stub columns filled with PCC subject to concentric compressive loads", Steel Compo. Struct, 5(1), 17-34. https://doi.org/10.12989/scs.2005.5.1.017
  11. Knowles, R. B. and Park, R. (1969), "Strength of concrete-filled steel tubular columns", J. Struct. Div., ASCE 95(ST12), 2565-2587.
  12. Liu, D. and Gho, W -M. (2005), "Axial load behaviour of high-strength rectangular concrete-filled steel tubular stub columns", Thin-Walled Struct, 43(8), 1131-1142. https://doi.org/10.1016/j.tws.2005.03.007
  13. Lue, D. M., Liu, J -L. and Yen, T. (2007), "Experimental study on rectangular CFT columns with high-strength concrete", J. Constr. Steel Res, 63,37-44. https://doi.org/10.1016/j.jcsr.2006.03.007
  14. Mander, J. B., Priestley, M. J. N and Park, R. (1988), "Theoretical stress-strain model for confined concrete", J. Struct. Eng., ASCE, 114(8):1807-1826.
  15. Sakino, K., Nakahara, H., Morino, S. and Nishiyama, I. (2004), "Behaviour of centrally loaded concrete-filled steel-tube short columns", J. Struct. Eng., ASCE, 130(2), 180-188. https://doi.org/10.1061/(ASCE)0733-9445(2004)130:2(180)
  16. Schneider, S.P. (1998), "Axially loaded concrete-filled steel tubes", J. Struct. Eng., ASCE, 124(10), 1125 -1138. https://doi.org/10.1061/(ASCE)0733-9445(1998)124:10(1125)
  17. Tomii, M., Yoshimura, K. and Morishita, Y. (1977), "Experimental studies on concrete filled steel tubular stub columns under concentric loading", Proceedings of International Colloquium on Stability of Structure under Static and Dynamic Loads, Washington, D.C..
  18. Uy, B. (2000), "Strength of concrete filled steel box columns incorporating local buckling", J. Struct. Eng., ASCE, 126(3), 341-352. https://doi.org/10.1061/(ASCE)0733-9445(2000)126:3(341)
  19. Uy, B. (2001), "Strength of short concrete filled high strength steel box columns", J. Constr. Steel Res., 57(2), 114-134.

Cited by

  1. Finite Element Modeling of Composite Concrete-Steel Columns / Numeryczne Modelowanie Zespolonych Słupów Stalowo-Betonowych vol.57, pp.4, 2011, https://doi.org/10.2478/v.10169-011-0027-z
  2. Finite element study the seismic behavior of connection to replace the continuity plates in (NFT/CFT) steel columns vol.21, pp.1, 2016, https://doi.org/10.12989/scs.2016.21.1.073
  3. Confinement of concrete in two-chord battened composite columns vol.19, pp.6, 2015, https://doi.org/10.12989/scs.2015.19.6.1511
  4. Reliability-based assessment of American and European specifications for square CFT stub columns vol.19, pp.4, 2015, https://doi.org/10.12989/scs.2015.19.4.811
  5. Pseudo-static tests of terminal stirrup-confined concrete-filled rectangular steel tubular columns vol.144, 2018, https://doi.org/10.1016/j.jcsr.2018.01.017
  6. Uniaxial Stress-Strain Model for Concrete Confined by Rectangular Steel Tubes vol.163-167, pp.1662-8985, 2010, https://doi.org/10.4028/www.scientific.net/AMR.163-167.1005
  7. Ductility of Concrete-Filled Steel Box Columns with Binding Bars Subjected to Axial Compression vol.255-260, pp.1662-8985, 2011, https://doi.org/10.4028/www.scientific.net/AMR.255-260.2584
  8. A New Method to Assess Ductility of CFT Box Columns with Binding Bars under Axial Compression vol.446-449, pp.1662-8985, 2012, https://doi.org/10.4028/www.scientific.net/AMR.446-449.78
  9. An Analytical Study of Square CFT Columns in Bracing Connection Subjected to Axial Loading vol.2018, pp.1687-8094, 2018, https://doi.org/10.1155/2018/8618937
  10. Theoretical Stress–Strain Model for Concrete in Steel-Reinforced Concrete Columns vol.145, pp.4, 2019, https://doi.org/10.1061/(ASCE)ST.1943-541X.0002289
  11. Behaviors of concrete filled square steel tubes confined by carbon fiber sheets (CFS) under compression and cyclic loads vol.10, pp.2, 2008, https://doi.org/10.12989/scs.2010.10.2.187
  12. The 3D-numerical simulation on failure process of concrete-filled tubular (CFT) stub columns under uniaxial compression vol.9, pp.4, 2008, https://doi.org/10.12989/cac.2012.9.4.257
  13. Structural behaviour of tapered concrete-filled steel composite (TCFSC) columns subjected to eccentric loading vol.9, pp.6, 2008, https://doi.org/10.12989/cac.2012.9.6.403
  14. Uni-axial behaviour of normal-strength CFDST columns with external steel rings vol.13, pp.6, 2008, https://doi.org/10.12989/scs.2012.13.6.587
  15. Uni-axial behaviour of normal-strength concrete-filled-steel-tube columns with external confinement vol.3, pp.6, 2012, https://doi.org/10.12989/eas.2012.3.6.889
  16. Behavior of circular thin-walled steel tube confined concrete stub columns vol.23, pp.2, 2008, https://doi.org/10.12989/scs.2017.23.2.229
  17. Composite action of notched circular CFT stub columns under axial compression vol.24, pp.3, 2008, https://doi.org/10.12989/scs.2017.24.3.309
  18. Local buckling of rectangular steel tubes filled with concrete vol.31, pp.2, 2008, https://doi.org/10.12989/scs.2019.31.2.201
  19. A new model for calculating the elastic local buckling stress of steel plates in square CFST columns vol.171, pp.None, 2008, https://doi.org/10.1016/j.tws.2021.108756