• Title/Summary/Keyword: Rectangular Cavity

Search Result 171, Processing Time 0.024 seconds

COMPARISON OF THE TREATMENTS OF TURBULENT HEAT FLUX FOR NATURAL CONVECTION WITH THE ELLIPTIC BLENDING SECOND MOMENT CLOSURE (Ellipting Blending Model을 사용하여 자연대류 해석 시 난류 열유속 처리법 비교)

  • Choi, Seok-Ki;Kim, Seong-O
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2007.04a
    • /
    • pp.171-176
    • /
    • 2007
  • A comparative study on the treatment of the turbulent heat flux with the elliptic mlending second moment closure for a natural convection is performed. Four cases of different treating the turbulent heat flux are considered. Those are the generalized gradient diffusion hypothesis (GGDH) the algebraic flux model (AFM) and the differential heat flux model (DFM). These models are implemented in the computer code specially designed for evaluation of turbulent models. Calculations are performed for a turbulent natural convection in the 1:5 rectangular cavity and the calculated results are compared with the experimental data. The results show that three models produce nearly the same accuracy of solutions.

  • PDF

A Method to Arrange Absorptive Materials on Walls for Effective Interior Noise Control (효율적 실내 소음 저감을 위한 흡음재 분포 위치 결정 방법)

  • Cho, Sung-Ho;Kim, Yang-Hann
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.1702-1707
    • /
    • 2003
  • Absorptive material arrangement method for effective interior noise control is proposed. Sound field with arbitrary boundary condition is formulated by Kirchhoff-Helmholtz integral equation. A simple example such as a rectangular cavity will present physical meaning between changing boundary condition and control of sound field. The effect of changing boundary condition is expressed in modal admittance. From this formulation, an admittance map is presented. The admittance map is the figure to represent position where absorptive material is attached. The admittance map can be assigned to each resonant frequency. There, however, may be common area of those maps. Then, frequency robust arrangement of absorptive material in noise control will be presented.

  • PDF

Enhancement of Mass Transfer of an Enclosed Fluid by Time-periodic Thermal Forcing (간헐 열전달을 이용한 밀폐용기내의 물질전달 향상)

  • Kwak H. S.
    • Journal of computational fluids engineering
    • /
    • v.7 no.1
    • /
    • pp.36-43
    • /
    • 2002
  • A numerical investigation is made of unsteady double-diffusive convection of a Boussinesq fluid in a rectangular cavity subject to time-periodic thermal excitations. The fluid is initially stratified between the top endwall of low solute concentration and the bottom endwall of high solute concentration. A time-dependent heat flux varying in a square wave fashion, is applied on one sidewall to induce buoyant convection. The influences of the imposed periodicity on double-diffusive convection are examined. A special concern is on the occurrence of resonance that the fluctuations of flow and attendant heat and mass transfers are mostly amplified at certain eigenmodes of the fluid system. Numerical solutions illustrate that resonant convection results in a conspicuous enhancement of time-mean mass transfer rate.

Numerical Study of Convective Heat Transfer in an Inclined Porous Media (경사진 다공성물체내에서의 자연대류에 관한 수치해석)

  • Mok I. K.;Seo J. Y.;Kim C. B.
    • The Magazine of the Society of Air-Conditioning and Refrigerating Engineers of Korea
    • /
    • v.15 no.4
    • /
    • pp.388-395
    • /
    • 1986
  • Numerical solutions of two-dimensional, steady, and natural are investigated in a confined rectangular cavity with porous media. The saturated fluid is bounded by two isothermal vertical walls at different temperatures and two adiabatic horizontal walls. Governing equations are numerically solved by finite difference method with the up wind scheme. Distributions of streamline and temperature we. predicted for aspect ratios ranging from 0.1 to 1.0, Rayleigh numbers 50 to $10^4$, and tilt angles $0^{\circ}\;to\;60^{\circ}$. Representative plots of temperature and velocity field according to tilt angle are presented. The effects of aspect ratio, Rayleigh number, and tilt angle on local and average Nusselt numbers are obtained. The optimum conditions for maximum Nusselt number are also presented with tilt angles.

  • PDF

Papers : Flow Noise due to the Impinging Vortex to the Chamfered Forward Step (논문 : 모따기 된 전향계단에 부딪치는 와류에 의한 유동소음)

  • Yu,Gi-Wan
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.30 no.1
    • /
    • pp.28-35
    • /
    • 2002
  • In cavity flow, the rectangular step generates so strong sound that many researchers have investigated method to suppress the nois during interaction between vortical flow and rectangular forward step. In this study the flow noise from the vortex motion in two-dimentional low Mach number flow past a forward step with various chamfering angle is calculated numerically. Inviscid incompressible discrete vortex model and matched asymptotic expansion(MAE) theory are applied to obtain the inner flow field and the outer noise field. Both source acoustic pressure and sound intensity are obtained with various chamfering height, chamfering angle and initial vortex position. The pressure amplitude is most suppressed when the chamfering angle is between $15^{\circ}C$ and $30^{\circC}$ at the chamfering length of 30% of the step height.

COMPUTATION OF TURBULENT NATURAL CONVECTION WITH THE ELLIPTIC-BLENDING SECOND-MOMENT CLOSURE (타원혼합 이차모멘트 모델을 사용한 난류 자연대류 해석)

  • Choi, S.K.;Han, J.W.;Kim, S.O.;Lee, T.H.
    • Journal of computational fluids engineering
    • /
    • v.21 no.4
    • /
    • pp.102-111
    • /
    • 2016
  • In this paper a computation of turbulent natural convection in enclosures with the elliptic-blending based differential and algebraic flux models is presented. The primary emphasis of the study is placed on an investigation of accuracy of the treatment of turbulent heat fluxes with the elliptic-blending second-moment closure for the turbulent natural convection flows. The turbulent heat fluxes in this study are treated by the elliptic-blending based algebraic and differential flux models. The previous turbulence model constants are adjusted to produce accurate solutions. The proposed models are applied to the prediction of turbulent natural convections in a 1:5 rectangular cavity and in a square cavity with conducting top and bottom walls, which are commonly used for validation of the turbulence models. The relative performance between the algebraic and differential flux model is examined through comparing with experimental data. It is shown that both the elliptic-blending based models predict well the mean velocity and temperature, thereby the wall shear stress and Nusselt number. It is also shown that the elliptic-blending based algebraic flux model produces solutions which are as accurate as those by the differential flux model.

EFFECT OF THE SHAPE OF IMPINGEMENT PLATE ON THE VAPORIZATION AND FORMATION OF FUEL MIXTURE IN IMPINGING SPRAY

  • Kang, J.J.;Kim, D.W.;Choi, G.M.;Kim, D.J.
    • International Journal of Automotive Technology
    • /
    • v.7 no.5
    • /
    • pp.585-593
    • /
    • 2006
  • The effect of the shape of the side wall on vaporization and fuel mixture were investigated for the impinging spray of a direct injection(DI) gasoline engine under a variety of conditions using the LIEF technique. The characteristics of the impinging spray were investigated under various configurations of piston cavities. To simulate the effect of piston cavity configurations and injection timing in an actual DI gasoline engine, the parameters were horizontal distance from the spray axis to side wall and vertical distance from nozzle tip to impingement plate. Prior to investigating the side wall effect, experiments on free and impinging sprays for flat plates were conducted and these results were compared with those of the side wall impinging spray. For each condition, the impingement plate was located at three different vertical distances(Z=46.7, 58.4, and 70 mm) below the injector tip and the rectangular side wall was installed at three different radial distances(R=15, 20, and 25 mm) from the spray axis. Radial propagation velocity from spray axis along impinging plate became higher with increasing ambient temperature. When the ambient pressure was increased, propagation speed reduced. High ambient pressures tended to prevent the impinging spray from the propagating radially and kept the fuel concentration higher near the spray axis. Regardless of ambient pressure and temperature fully developed vortices were generated near the side wall with nearly identical distributions, however there were discrepancies in the early development process. A relationship between the impingement distance(Z) and the distance from the side wall to the spray axis(R) was demonstrated in this study when R=20 and 25 mm and Z=46.7 and 58.4 mm. Fuel recirculation was achieved by adequate side wall distance. Fuel mixture stratification, an adequate piston cavity with a shorter impingement distance from the injector tip to the piston head should be required in the central direct injection system.

A Study on the Utility of Statistical Power Balance Method for Efficient Electromagnetic Analysis of Large and Complex Structures (복잡한 대형 구조물의 효율적인 전자파 해석을 위한 통계적인 PWB 방법의 유용성에 관한 연구)

  • Lee, Young-Seung;Park, Seung-Keun
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.24 no.2
    • /
    • pp.189-197
    • /
    • 2013
  • With the trend of technological advances in electronic communications and the advent of ubiquitous environments, the density of existing electronic equipment in the surroundings is increasing significantly. It is hence great importance to study the numerically efficient and fast algorithm for complex and large environments to identify their electromagnetic compatibility and interference characteristics of equipments installed in those structure. This paper introduces a statistical-based power balance method(PWB) for the analysis of these problems and considers its practical utility. The 2-dimensional lossy rectangular cavity was numerically revisited to clarify its relationship with the classical deterministic analysis solutions based on the Maxwell's equation. It can be shown that the statistical assumptions and analysis results from the power balance method correspond to the volume average over the realistic deterministic domain. This statistical power balance approach should be a sufficiently practical alternative to the electromagnetic problem of complex and large environment since it is apparent that the full-wave analysis methods have some severe limits of its computational burdens under the situation of complex and large environment.

Effective Coupling of a Topological Corner-state Nanocavity to Various Plasmon Nanoantennas

  • Ma, Na;Jiang, Ping;Zeng, You Tao;Qiao, Xiao Zhen;Xu, Xian Feng
    • Current Optics and Photonics
    • /
    • v.6 no.5
    • /
    • pp.497-505
    • /
    • 2022
  • Topological photonic nanocavities are considered to possess outstanding optical performance, and provide new platforms for realizing strong interaction between light and matter, due to their robustness to impurities and defects. Here hybrid plasmonic topological photonic nanocavities are proposed, by embedding various plasmon nanoantennas such as gold nanospheres, cylinders, and rectangles in a topological photonic crystal corner-state nanocavity. The maximum quality factor Q and minimum effective mode volume Veff of these hybrid nanocavities can reach the order of 104 and 10-4 (𝜆/n)3 respectively, and the high figures of merit Q/Veff for all of these hybrid nanocavites are stable and on the order of 105 (𝜆/n)-3. The relative positions of the plasmon nanoantennas will influence the coupling strength between the plasmon structures and the topological nanocavity. The hybrid nanocavity with gold nanospheres possesses much higher Q, but relatively large Veff. The presence of a gold rectangular structure can confine more electromagnetic energy within a smaller space, since its Veff is smallest, although Q is lowest among these structures. This work provides an outstanding platform for cavity quantum electrodynamics and has a wide range of applications in topological quantum light sources, such as single-photon sources and nanolasers.

Clinical Efficacy of Latex Cover for Dental Handpiece (치과 핸드피스용 감염방지구의 임상적 효용성)

  • Lee, Ki-Ho;Paek, Dong-Heon
    • Journal of Oral Medicine and Pain
    • /
    • v.34 no.3
    • /
    • pp.237-245
    • /
    • 2009
  • The purpose of this study was to investigate the clinical efficacy of latex cover developed for dental handpiece on contamination of microorganisms during dental treatment and to determine whether it can be an alternative to conventional sterilization such as autoclaving. E. fecaelis was used as a experimental microorganism instead of oral flora. Experimental bowl with 2 cm of rectangular cavity was fabricated for handpiece operating instead of oral cavity. Latex covers ($Orokeeper^{(R)}$, Orobiotech Co., Korea) and several handpieces were used after sterilization by autoclave. Four experiments were performed to evaluate bacterial contamination related with (1) various parts of dental handpiece, (2) swabbing time with alcohol sponge, (3) postoperative air-water spraying time and (4) consecutive use of latex covers without autoclaving. The results show that face of handpiece uncovered with latex cover was severely contaminated than the covered area and that most bacteria were removed by swabbing face and head area of dental hand-piece and by air-water spraying more than 15 seconds nearly up to the level of sterilization. Conclusively it can be suggested that use of latex cover for handpiece during dental procedure, swabbing with alcohol sponge is air-water spraying for more than 15 seconds after use of dental handpiece should be very useful and practical for prevention of cross infection and should be an alternative method for the sterilization of dental handpiece under some difficult situations not being able to sterilize a handpiece with autoclave.