DOI QR코드

DOI QR Code

Effective Coupling of a Topological Corner-state Nanocavity to Various Plasmon Nanoantennas

  • Ma, Na (College of Science, China University of Petroleum (East China)) ;
  • Jiang, Ping (College of Science, China University of Petroleum (East China)) ;
  • Zeng, You Tao (College of Science, China University of Petroleum (East China)) ;
  • Qiao, Xiao Zhen (College of Science, China University of Petroleum (East China)) ;
  • Xu, Xian Feng (College of Science, China University of Petroleum (East China))
  • Received : 2022.02.25
  • Accepted : 2022.07.20
  • Published : 2022.10.25

Abstract

Topological photonic nanocavities are considered to possess outstanding optical performance, and provide new platforms for realizing strong interaction between light and matter, due to their robustness to impurities and defects. Here hybrid plasmonic topological photonic nanocavities are proposed, by embedding various plasmon nanoantennas such as gold nanospheres, cylinders, and rectangles in a topological photonic crystal corner-state nanocavity. The maximum quality factor Q and minimum effective mode volume Veff of these hybrid nanocavities can reach the order of 104 and 10-4 (𝜆/n)3 respectively, and the high figures of merit Q/Veff for all of these hybrid nanocavites are stable and on the order of 105 (𝜆/n)-3. The relative positions of the plasmon nanoantennas will influence the coupling strength between the plasmon structures and the topological nanocavity. The hybrid nanocavity with gold nanospheres possesses much higher Q, but relatively large Veff. The presence of a gold rectangular structure can confine more electromagnetic energy within a smaller space, since its Veff is smallest, although Q is lowest among these structures. This work provides an outstanding platform for cavity quantum electrodynamics and has a wide range of applications in topological quantum light sources, such as single-photon sources and nanolasers.

Keywords

Acknowledgement

Central University Basic Research Fund (22CX03018A); Graduate Innovation Engineering Project (YCX2021145).

References

  1. P. Lodahl, S. Mahmoodian, and S. Stobbe, "Interfacing single photons and single quantum dots with photonic nanostructures," Rev. Mod. Phys. 87, 347 (2015). https://doi.org/10.1103/RevModPhys.87.347
  2. J. L. O'brien, A. Furusawa, and J. Vuckovic, "Photonic quantum technologies," Nat. Photonics 3, 687-695 (2009). https://doi.org/10.1038/nphoton.2009.229
  3. F. Liu, A. J. Brash, J. O'Hara, L. M. P. P. Martins, C. L. Phillips, R. J. Coles, B. Royall, E. Clarke, C. Bentham, N. Prtljaga, I. E. Itskevich, L. R. Wilson, M. S. Skolnick, and A. M. Fox, "High Purcell factor generation of indistinguishable on-chip single photons," Nat. Nanotechnol. 13, 835-840 (2018). https://doi.org/10.1038/s41565-018-0188-x
  4. S. Strauf, N. G. Stoltz, M. T. Rakher, L. A. Coldren, P. M. Petroff, and D. Bouwmeester, "High-frequency single-photon source with polarization control," Nat. Photonics 1, 704-708 (2007). https://doi.org/10.1038/nphoton.2007.227
  5. A. Faraon, C. Santori, Z. Huang, V. M. Acosta, and R. G. Beausoleil, "Coupling of nitrogen-vacancy centers to photonic crystal cavities in monocrystalline diamond," Phys. Rev. Lett. 109, 033604 (2012). https://doi.org/10.1103/physrevlett.109.033604
  6. K. Srinivasan and O. Painter, "Linear and nonlinear optical spectroscopy of a strongly coupled microdisk-quantum dot system," Nature 450, 862-865 (2007). https://doi.org/10.1038/nature06274
  7. K. J. Vahala, "Optical microcavities," Nature 424, 839-846 (2003). https://doi.org/10.1038/nature01939
  8. T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. Shchekin, and D. Deppe, "Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity," Nature 432, 200-203 (2004). https://doi.org/10.1038/nature03119
  9. W.-H. Chang, W.-Y. Chen, H.-S. Chang, T.-P. Hsieh, J.-I. Chyi, and T.-M. Hsu, "Efficient single-photon sources based on low-density quantum dots in photonic-crystal nanocavities," Phys. Rev. Lett. 96, 117401 (2006). https://doi.org/10.1103/PhysRevLett.96.117401
  10. D. Englund, B. Shields, K. Rivoire, F. Hatami, J. Vuckovic, H. Park, and M. D. Lukin, "Deterministic coupling of a single nitrogen vacancy center to a photonic crystal cavity," Nano Lett. 10, 3922-3926 (2010). https://doi.org/10.1021/nl101662v
  11. Y. Akahane, T. Asano, B.-S. Song, and S. Noda, "High-Q photonic nanocavity in a two-dimensional photonic crystal," Nature 425, 944-947 (2003). https://doi.org/10.1038/nature02063
  12. H. Zhang, Y.-C. Liu, C. Wang, N. Zhang, and C. Lu, "Hybrid photonic-plasmonic nano-cavity with ultra-high Q/V," Opt. Lett. 45, 4794-4797 (2020). https://doi.org/10.1364/ol.402781
  13. Y.-H. Deng, Z.-J. Yang, and J. He, "Plasmonic nanoantenna-dielectric nanocavity hybrids for ultrahigh local electric field enhancement," Opt. Express 26, 31116-31128 (2018). https://doi.org/10.1364/oe.26.031116
  14. M. C. Rechtsman, J. M. Zeuner, Y. Plotnik, Y. Lumer, D. Podolsky, F. Dreisow, S. Nolte, M. Segev, and A. Szameit, "Photonic Floquet topological insulators," Nature 496, 196-200 (2013). https://doi.org/10.1038/nature12066
  15. A. B. Khanikaev, S. H. Mousavi, W.-K. Tse, M. Kargarian, A. H. MacDonald, and G. Shvets, "Photonic topological insulators," Nat. Mater. 12, 233-239 (2013). https://doi.org/10.1038/nmat3520
  16. P. St-Jean, V. Goblot, E. Galopin, A. Lemaitre, T. Ozawa, L. Le Gratiet, I. Sagnes, J. Bloch, and A. Amo, "Lasing in topological edge states of a one-dimensional lattice," Nat. Photonics 11, 651-656 (2017). https://doi.org/10.1038/s41566-017-0006-2
  17. Y. Ota, R. Katsumi, K. Watanabe, S. Iwamoto, and Y. Arakawa, "Topological photonic crystal nanocavity laser," Commun. Phys. 1, 86 (2018). https://doi.org/10.1038/s42005-018-0083-7
  18. Y. Ota, F. Liu, R. Katsumi, K. Watanabe, K. Wakabayashi, Y. Arakawa, and S. Iwamoto, "Photonic crystal nanocavity based on a topological corner state," Optica. 6, 786-789 (2019). https://doi.org/10.1364/optica.6.000786
  19. X. Gao, L. Yang, H. Lin, L. Zhang, J. Li, F. Bo, Z. Wang, and L. Lu, "Dirac-vortex topological cavities," Nat. Nanotechnol. 15, 1012-1018 (2020). https://doi.org/10.1038/s41565-020-0773-7
  20. Z.-K. Shao, H.-Z. Chen, S. Wang, X.-R. Mao, Z.-Q. Yang, S.-L. Wang, X.-X. Wang, X. Hu, and R.-M. Ma, "A high-performance topological bulk laser based on band-inversion-induced reflection," Nat. Nanotechnol. 15, 67-72 (2020). https://doi.org/10.1038/s41565-019-0584-x
  21. X. Xie, W. Zhang, X. He, S. Wu, J. Dang, K. Peng, F. Song, L. Yang, H. Ni, Z. Niu, C. Wang, K. Jin, X. Zhang, and X. Xu, "Cavity quantum electrodynamics with second-order topological corner state," Laser Photonics Rev. 14, 1900425 (2020). https://doi.org/10.1002/lpor.201900425
  22. W. Zhang, X. Xie, H. Hao, J. Dang, S. Xiao, S. Shi, H. Ni, Z. Niu, C. Wang, K. Jin, X. Zhang, and X. Xu, "Low-threshold topological nanolasers based on the second-order corner state," Light Sci. Appl. 9, 109 (2020). https://doi.org/10.1038/s41377-020-00352-1
  23. Z. Qian, Z. Li, H. Hao, L. Shan, Q. Gong, and Y. Gu, "Topologically enabled ultralarge purcell enhancement robust to photon scattering," arXiv:1910.14222 (2019).
  24. H. Zhang, Y. Zheng, Z.-M. Yu, X. Hu, and C. Lu, "Topological hybrid nanocavity for coupling phase transition," J. Opt. 23, 124002 (2021). https://doi.org/10.1088/2040-8986/ac2fd2