• Title/Summary/Keyword: Recovery of metal

Search Result 547, Processing Time 0.028 seconds

Commercialization of Ion Exchange Fiber System for Recovering Valuable Metals in Plating Wastewater (도금 폐수 중 유가 금속 회수를 위한 이온교환섬유의 상용화기술)

  • You, Seong-sik
    • Korean Chemical Engineering Research
    • /
    • v.55 no.4
    • /
    • pp.535-541
    • /
    • 2017
  • On the basis of 200 ppm of Ag and 120 l/h of feed flow rate, we built a pilot plant of an ion exchange fiber system having an double tube type ion exchange chamber with strong base ion exchange fiber (FIVAN A-6) which was designed to replace fibers easily and to eliminate the need for a fixture. The following results were obtained for the double tube type of ion exchange fiber system with an ion exchange capacity of 4.6 meq/g for Ag. The adsorption process was operated in the range of 40~90 l/h after confirming the effect of the flow rate and, pH did not affect formation of complex ion of Ag in the range of pH 7~12. In the case of backwash process, the recovery rate of Ag was tested in the range of 60~120 l/h and comparative experiments were carried out using NaOH, $NH_4Cl$, and NaCl as the chemicals for backwash. Although the desorption time was shortened at higher concentration, the desorption efficiency per mol was lowered. Therefore, it was confirmed that the desorption time and the concentration should be well balanced to operate economically. The desorption pattern of the backwash process is slower than the adsorption process and takes a lot of time. The results showed that the Ag adsorption ratio was 99.5% or more and the Ag recovery ratio was 96% or more, and commercialization was possible.

A Study on the Recycling Process of Nickel Recovery from Inconel 713C Scrap based on Hydrometallurgy (인코넬 713C 스크랩으로부터 니켈 자원 회수를 위한 습식제련 기반 재활용공정 연구)

  • Min-seuk Kim;Rina Kim;Kyeong-woo Chung;Jong-Gwan Ahn
    • Resources Recycling
    • /
    • v.33 no.4
    • /
    • pp.36-46
    • /
    • 2024
  • We investigated a hydrometallurgical process of nickel recovery from Inconel 713C scrap. The process proceeded with a series of i) comminution of pyrometallurgical treated scrap, ii) sulfuric acid leaching, iii) solvent extraction of unreacted acid, molybdenum, aluminum, and precipitation of chromium, iv) crystallization of nickel sulfate by vacuum evaporation, and v) nickel electrowinning. The nickel-aluminum intermetallic compound, Ni2Al3, was formed by the pyrometallurgical pretreatment readily grounded under 75 ㎛. Sulfuric acid leaching was done for 2 hours in 2 mol/L, 20 g/L solid/liquid ratio, and 80 ℃. It revealed that over 98 % of nickel and aluminum was dissolved, whereas 28 % of molybdenum was. A nickel sulfate solution with 2.34 g/L for the crystallization of nickel sulfate hydrate was prepared via solvent extraction and precipitation. Over 99 % of molybdenum and aluminum and 93 % of chromium was removed. Nickel metal with 99.9 % purity was obtained by electrowinning with the nickel sulfate monohydrate in the cell equipped with anion exchange membranes for catholyte pH control. The membrane did not work well, resulting in a low current efficiency of 73.3 %.

Recovery of Silicon from Silicon Sludge by Electrolysis (실리콘 슬러지로부터 실리콘의 전해회수(電解回收))

  • Park, Jesik;Jang, Hee Dong;Lee, Churl Kyoung
    • Resources Recycling
    • /
    • v.21 no.5
    • /
    • pp.31-37
    • /
    • 2012
  • As a recovery of elemental silicon from the sludge of Si wafer process, a process of mechanical separation-chlorine roasting-electrolysis has been suggested. The silicon sludge consisted of Si, SiC, machine oil, and metallic impurities. The oil and metal impurities was removed by mechanical separation. The Si-SiC mixture was converted to silicon chloride by chlorine roasting at $1000^{\circ}C$ for 1 hr and the silicon chloride was dissolved into an ionic liquid of $[Bmpy]Tf_2N$ as an electrolyte. Cyclic voltammetry results showed an wide voltage window of pure $[Bmpy]Tf_2N$ and a reduction peak of elemental Si from $[Bmpy]Tf_2N$ dissolved $SiCl_4$ on Au electrode, respectively. The silicon deposits could be prepared on the Au electrode by the potentiostatic electrolysis of -1.9 V vs. Pt-QRE. The elemental silicon uniformly electrodeposited was confirmed by various analytical techniques including XRD, FE-SEM with EDS, and XPS. Any impurity was not detected except trace oxygen contaminated during handling for analysis.

A Study on Hydrogen Detection Characteristics of the Pt-MIS Capacitor Device (Pt-MIS 커패시터 소자의 수소가스 검지특성 연구)

  • Sung, Yung-Kwon;Yi, Seung-Hwan;Koh, Jung-Hyuk;Rhie, Dong-Hee
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.48 no.2
    • /
    • pp.69-75
    • /
    • 1999
  • The characteristics of $H_2$ gas detection have been investigated using the Pt-MIS capacitor composed of the LPCVD nitride on the oxide. The flat band voltage shift is measured as 0.1 V in 1,000 ppm $H_2$ gas ambient and to be independent of Pt catalyst thickness. It is found that the flatband voltage shift is proportional to the hydrogen concentrations. The response and recovery time of Pt-MIS capacitor are 5 mins and 25 mins respectively. The samples of 30nm thick Pt revealed much higher sensitivity than that of 150nm samples. The samples of 150nm Pt showed that the flatband voltage shift of the device is due to the formation of the dipole layer of the adsorbed hydrogen atoms at the Pt-insulator interface.

  • PDF

Solvent Sublation of Trace Noble Metals by Formation of Metal Complexes with 2-Mercaptobenzothiazole

  • Kim, Yeong Sang;Sin, Je Hyeok;Choe, Yun Seok;Lee, Won;Lee, Yong Il
    • Bulletin of the Korean Chemical Society
    • /
    • v.22 no.1
    • /
    • pp.19-24
    • /
    • 2001
  • A solvent sublation has been studied for the determination of trace Au(III), Pt(IV) and Pd(II) in waste water with their complexes of 2-mercaptobenzothiazole (MBT). Experimental conditions such as the concentration of HCl, the amount of MBT as a ligand, the type and amount of surfactants, bubbling rate and time, and the type of organic solvent were optimized for the solvent sublation, i.e., 25.0 mL of 2.0 M HCl solution and 30mL of 0.4%(w/v) MBT ethanolic solution were added to a 1.0 L sample to form stable complexes. The addition of 4.0 mL of 1 ${\times}$$10^{-3}$ M CTAB (cetyltrimehtylammonium bromide) solution was needed for the effective flotation accomplished by bubbling nitrogen gas at the rate of 40.0 mL/min for 35 minutes. As a solvent, 20.0 mL of MIBK (methylisobuthylketone) was used to extract the floated complexes. The procedure was applied to three kinds of waste waters. Au(III) was determined as 0.68 ng/mL and 0.98 ng/mL respectively for final washed water of two plating industries in Banwol. Pd(II) and Pt(IV) were not detected in any of the three samples. The recovery, which was obtained with analyte-spiked samples, were 95-120%.

Characteristics of Surface Reaction of SnO2 Thin Films Prepared by MOCVD (MOCVD로 제조한 SnO2 박막의 표면반응 특성)

  • Park, Kyung-Hee;Seo, Yong-Jin;Hong, Kwang-Jun;Lee, Woo-Sun;Park, Jin-Seong
    • Korean Journal of Materials Research
    • /
    • v.13 no.5
    • /
    • pp.309-312
    • /
    • 2003
  • Tin dioxide($_SnO2$) thin films were deposited on alumina substrate by metal-organic chemical vapor deposition (MOCVD) as a function of temperature and time. Thin films were fabricated from di-n-butyltin diacetate as a precursor and oxygen as an oxidation. The microstructure of deposited films was characterized by X-ray diffraction and field emission scanning electron microscopy(FE-SEM). The thickness was linearly increased with deposition time and $SnO_2$structure was found from $375^{\circ}C$ for the deposition time of 32 min. The maximum sensitivity to 500ppm CO gas was observed for the specimens deposited at $375^{\circ}C$ for 2 min at the operating temperature of $350^{\circ}C$. Gas sensitivity to CO increased with decreasing the film thickness. The sensing properties of response time, recovery and sensitivity of CO were changed with variations of substrate temperature and time.

UO22+ Ion-Selective Membrane Electrode Based on a Naphthol-Derivative Schiff's Base 2,2'-[1,2-Ethandiyl bis(nitriloethylidene)]bis(1-naphthalene)

  • Shamsipur, Mojtaba;Saeidi, Mahboubeh;Yari, Abdullah;Yaganeh-Faal, Ali;Mashhadizadeh, Mohammad Hossein;Azimi, Gholamhasan;Naeimi, Hossein;Sharghi, Hashem
    • Bulletin of the Korean Chemical Society
    • /
    • v.25 no.5
    • /
    • pp.629-633
    • /
    • 2004
  • A new PVC membrane electrode for $UO_2^{2+}$ ion based on 2,2'-[1,2-ethanediyl bis (nitriloethylidene)]bis(1-naphthalene) as a suitable ionophore was prepared. The electrode exhibites a Nernstian response for $UO_2^{2+}$ ion over a wide concentration range ($1.0{\times}10^{-1}-1.0{\times}10^{-7}$M) with a slope of 28.5 ${\pm}$ 0.8 mV/decade. The limit of detection is $7.0{\times}10^{-8}$M. The electrode has a response time of < 20 s and a useful working pH range of 3-4. The proposed membrane sensor shows good discriminating abilities towards $UO_2^{2+}$ ion with regard to several alkali, alkaline earth transition and heavy metal ions. It was successfully used to the recovery of uranyl ion from, tap water and, as an indicator electrode, in potentiometric titration of $UO_2^{2+}$ ion with Piroxycam.

Ex-situ Remediation of a Contaminated Soil of Fe Abandoned Mine using Organic Acid Extractants (유기산 추출에 의한 철 폐광산 오염토양의 복원)

  • 정의덕;강신원;백우현
    • Journal of Environmental Science International
    • /
    • v.9 no.1
    • /
    • pp.43-47
    • /
    • 2000
  • A study on the remediation of heavily for ion contaminated soils from abandoned iron mine was carried out, using ex-situ extraction process. Also, oxalic acid as a complex agent was evaluated as a function of concentration, reaction time and mixing ratio of washing agent in order to evaluate Fe removability of the soil contaminated from the abandoned iron mine. Oxalic acid showed a better extraction performance than 0.1N-HCl, i.e., the concentrations of Fe ion extracted from the abandoned mine for the former at uncontrolled pH and the latter were 1,750 ppm and 1,079 ppm, respectively. The optimum washing condition of oxalic acid was in the ratio of 1:5 and 1:10 between soil and acid solution during l hr reaction. The total concentrations of Fe ion by oxalic acid and EDTA at three repeated extraction, were 4,554 ppm and 864 ppm, respectively. The recovery of Fe ions from washing solution was achieved, forming hydroxide precipitation and metal sulfide under excess of calcium hydroxide and sodium sulfide. In addition, the amounted of sodium sulfide and calcium hydroxide for the optimal revovery of Fe were 15g/$\ell$ and 5g/$\ell$ from the oxalic acid complexes, respectively.

  • PDF

Recovery of cesium ions from seawater using a porous silica-based ionic liquid impregnated adsorbent

  • Wu, Hao;Kudo, Tatsuya;Kim, Seong-Yun;Miwa, Misako;Matsuyama, Shigeo
    • Nuclear Engineering and Technology
    • /
    • v.54 no.5
    • /
    • pp.1597-1605
    • /
    • 2022
  • A porous silica-based adsorbent was prepared by impregnating the pores of a silica support with the extractant 1,3-[(2,4-diethylheptylethoxy)oxy]-2,4-crown-6-calix[4]arene (Calix[4]arene-R14) and an additive agent 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide (C2mim + NTf-2) as the materials to remove cesium(I) (Cs+) ions from seawater. The as-prepared adsorbent showed excellent adsorption performance toward Cs+ ions, with adsorption equilibrium reached within 2 h and an adsorption amount of 0.196 mmol/g observed. The solution pH, temperature, and the presence of coexisting metal ions were found to have almost no effect on Cs+ adsorption. The adsorption mechanism was considered to proceed via ion exchange between Cs+ and C2mim+. In addition, the particle-induced X-ray emission analysis results further clarified that the adsorbed Cs+ ion species on the adsorbent was in the form of both CsCl and CsBr.

The Recovery of Heavy Metals Using Encapsulated Microbial Cells

  • Park, Joong-Kon;Jin, Yong-Biao;Park, Hyung-Woo
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.2 no.2
    • /
    • pp.132-135
    • /
    • 1997
  • We prepared capsules containing Saccharomyces cerevisiae and Zoogloea ramigera cells for the removal of lead(II) and cadmium ions. Microbial cells were encapsulated and cultured in the growth medium. The S.cerevisiae cells grown in the capule did not leak through the capsule membrane. The dried cell density reached to 250 g/l on the basis of the inner volume of the 2.0 mm diameter capsule after 36 hour cultivation. The dry whole cell expolymer density of encapsulated Z.ramigera reached to 200 g/L. The capsule was crosslinked with triethylene tetramine and glutaric dialdehyde solutions. The cadmium uptake of encapsulated whole cell expolymer of Z.ramigera was 55mg Cd/g biosorbent. The adsorption line followed well Langmuir isotherm. The lead uptake of the encapsulated S. cerevisiae was about 30 mg Pb/g biomass. The optimum pH of the lead uptake using encapsulated S. cerevisiae was found to be 6. Freundlich model showed a little better fit to the adsorption data than Langmuir model 95 percent of the lead adsorbed on the encapsulated biosorbents was desorbed by the 1 M HCl solution. The capsule was reused 50 batches without loosing the metal uptake capacity. And the mechanical strength of the crosslinked capsule was retained after 50 trials.

  • PDF