• Title/Summary/Keyword: Recovery of exhaust gas heat

Search Result 129, Processing Time 0.026 seconds

A Study on the Efficiency of Fuel Cells for Marine Generators (선박 발전기용 연료전지 시스템의 효율에 관한 연구)

  • Lee, Jung-Hee;Kwak, Jae-Seob;Kim, Kwang-Heui
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.17 no.5
    • /
    • pp.52-57
    • /
    • 2018
  • Most current ships have adopted on-board diesel generators to produce electricity, but the overall efficiency of equipment is down to about 50% due to thermal losses from operations such as exhaust gas, jacket water cooler, scavenge air cooler, etc. Recently, fuel cells have been highlighted as a promising technology to reduce the effect on the environment and have a higher efficiency. Therefore, this paper suggested a solid oxide fuel cell (SOFC)-gas turbine (GT) using waste heat from a SOFC and SOFC-GT-steam turbine (ST) with Rankine cycle. To compare both configurations, the fuel flow rate, current density, cell voltage, electrical power, and overall efficiency were evaluated at different operating loads. The overall efficiency of both SOFC hybrid systems was higher than the conventional system.

Performance analysis of an organic Rankine cycle for waste heat recovery of a passenger car (승용차 폐열 회수용 유기 랭킨 사이클 성능 분석)

  • Kim, Hyun-Jin;Moon, Je-Hyeon;Yu, Je-Seung;Lee, Young-Sung
    • Journal of Power System Engineering
    • /
    • v.17 no.2
    • /
    • pp.87-94
    • /
    • 2013
  • Applicability of organic Rankine cycle for a passenger car with 3.5 L gasoline engine to convert low grade waste heat to useful shaft power has been numerically studied. Working fluid is R134a, and the Rankine cycle is composed of boiler for recovering engine cooling water heat, super heater for recovering exhaust gas heat, scroll expander for converting waste heat to shaft power, condenser for heat emission, internal heat exchanger, and feed pump. Assuming efficiencies of 90% for the heat exchangers, 75% for the scroll expander, and 80% for the feed pump, the Rankine cycle efficiency of 5.53% was calculated at the vehicle speed of 120 km/hr. Net expander shaft output after subtracting the power required to run the pump was 3.22 kW, which was equivalent to 12.1% improvement in fuel consumption. About the same level of improvement in the fuel consumption was obtained over the vehicle speed range of 60 km/hr~120 km/hr.

Comparison of Ammonia Mass Flow Rate between Two Ammonia Injection Positions in DeNOx system of a Horizontal HRSG (수평형 HRSG의 탈질설비에서 암모니아 분사위치 변동에 따른 암모니아 유량비교)

  • Park, Jae-Hyun;Yoo, Hoseon
    • Plant Journal
    • /
    • v.14 no.4
    • /
    • pp.48-54
    • /
    • 2018
  • As the emission limits for NOx in power generation facilities were strengthened, HRSGs installed in the 1990s became necessary to install additional DeNOx system. However, since there is no space in the HRSG for installing the entire the catalyst and ammonia injection grid, as an alternative, the catalyst was installed inside of the HRSG and the ammonia injection device was installed in the exhaust duct of the gas turbine. Experiments were conducted in horizontal HRSG of Incheon combined cycle power plant. Experimental results show that the ammonia injection method in the gas turbine exhaust duct is 1.2 times higher than the HRSG internal ammonia injection method. However when operating a HRSG for 30 years as its life span, ammonia injection method in the gas turbine exhaust duct is more economical than the cost of new HRSG construction.

  • PDF

Thermoelectric Power Generation System with Loop Thermosyphon (루프형 열사이폰을 이용한 열전발전 시스템)

  • Kim, Sun-Kook;Rhi, Seok-Ho;Won, Byung-Chul;Kim, Dae-Hyun;Lee, Chung-Gu
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.33 no.9
    • /
    • pp.718-721
    • /
    • 2009
  • A new progressive advanced approach (Loop thermosyphon Thermoelectric Power generation System) is suggested to optimize heat recovery ability from vehicle exhaust gas. As an initial look at device feasibility, the present new TE system adopted the loop thermosyphon as a cooling heat exchanger. The TE system with loop thermosyphon was investigated in terms of working fluids, instability of system, amount of working fluid, and so on. Basically, the present experimental works have been focused on finding the optimum working condition of the system to improve thermoelectric power output and to obtain stable power generation to operate hybrid vehicles. The present experimental results with the loop thermosyphon TE module shows possibilities as an improved TE system for future thermoelectric hybrid vehicles.

A dual Pressure, Steam Injection Combined cycle Power Plant Performance Analysis (2압, 증기분사 복합발전 사이클에 대한 성능해석)

  • Kim, Su-Yong;Son, Ho-Jae;Park, Mu-Ryong;Yun, Ui-Su
    • 연구논문집
    • /
    • s.27
    • /
    • pp.75-86
    • /
    • 1997
  • Combined cycle power plant is a system where a gas turbine or steam turbine is used to produce shaft power to drive a generator for producing electrical power and the steam from the HRSG is expanded in a steam turbine for additional shaft power. Combined cycle plant is a one from of cogeneration. The temperature of the exhaust gases from a gas turbine ranges from $400^\circC$ to $600^\circC$, and can be used effectively in a heat recovery steam generator to produce steam. Combined cycle can be classed as a "topping(gas turbine)" and a "bottoming(steam turbine)" cycle. The first cycle, to which most of the heat is supplied, is called the topping cycle. The wasted heat it produces is then utilized in a second process which operates at a lower temperature level and is therefore referred to as a "bottoming cycle". The combination of gas/steam turbine power plant managed to be accepted widely because, first, each individual system has already proven themselves in power plants with a single cycle, therefore, the development costs are low. Secondly, the air as a working medium is relatively non-problematic and inexpensive and can be used in gas turbines at an elevated temperature level over $1000^\circC$. The steam process uses water, which is likewise inexpensive and widely available, but better suited for the medium and low temperature ranges. It, therefore, is quite reasonable to use the steam process for the bottoming cycle. Only recently gas turbines attained inlet temperature that make it possible to design a highly efficient combined cycle. In the present study, performance analysis of a dual pressure combined-cycle power plant is carried out to investigate the influence of topping cycle to combined cycle performance.

  • PDF

A Study on the Refrigerant Characteristics of the Organic Rankine Cycle Power System Using the Waste Heat of the Main Propulsion Engine (선박 주 추진 엔진폐열을 이용하는 고온도차발전시스템의 냉매특성에 관한 연구)

  • Song, Young-uk;Jee, Jae-hoon;Park, Sang-kyun;Oh, Cheol
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.27 no.6
    • /
    • pp.839-845
    • /
    • 2021
  • In this study, it shows the efficiency of each refrigerant through simulation method for ORC (Organic Rankine Cycle) power generation that converts waste heat discarded by ship exhaust into electricity for the purpose of reducing CO2 emission and increasing ship waste heat recovery. by Simulation was performed with waste heat from the exhaust gas which is relatively high temperature and cooling sea water which is relatively low temperature from ships. As a result of the sea water cooling ORC power generating system, efficiency of the working fluid with R717 is highest as a 2.86 % and the next working fluid is R152a, R134a, R143a and R125a.

A Study on the Thermal Flow of Waste Heat Recovery Unit (WHRU) for Ship's Organic Rankine Cycle Power Generation System using CFD Method (CFD를 활용한 선박고온도차발전용 WHRU의 열유동 해석에 관한 연구)

  • Whang, Dae-jung;Park, Sang-kyun;Jee, Jae-hoon;Bang, Eun-shin;Oh, Cheol
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.27 no.5
    • /
    • pp.647-655
    • /
    • 2021
  • The IMO (International Maritime Organization) is discussing the improvement of energy ef iciency of ships in order to reduce greenhouse gas emissions from ships. Currently, by applying an ORC power generation system using waste heat generated from ships, high energy conversion efficiency can be expected from ships. This technology uses an organic medium based on Freon or hydrocarbons as the working fluid, which evaporates at a lower temperature range than water. Through this, it is possible to generate steam (gas) and generate power at a low and low temperature relatively. In this study, the analysis of heat flow between the refrigerant and waste heat in the ORC power generation system, which is an organic Rankine cycle, is analyzed using 3D simulation techniques to determine the temperature change, velocity change, pressure change, and mass change of the fluid flowing of the WHRU (Waste Heat Recovery Unit) inside and the outside the structure. The purpose of this study is to analyze how the mass change affects the structure, and this study analyzed the heat transfer of the heat exchanger from the refrigerant and the exhaust gas of the ship's main engine in the ORC power generation system using this technique.

Performance Analysis of Two-Loop Rankine Cycle for Engine Waste Heat Recovery (엔진 폐열 회수를 위한 이중 회로 랭킨 사이클 성능 해석)

  • Kim, Young Min;Shin, Dong Gil;Kim, Chang Gi;Woo, Se Jong;Choi, Byung Chul
    • Journal of Energy Engineering
    • /
    • v.21 no.4
    • /
    • pp.402-410
    • /
    • 2012
  • A two-loop Rankine cycle for engine waste heat recovery of gasoline vehicle has been investigated. Water-steam cycle as a high-temperature (HT) loop for exhaust gas heat recovery and R-134a cycle as a low-temperature (LT) loop for both heat recovery of the engine coolant and the residual heat from the HT loop were considered. Energy and exergy analysis was performed to investigate the performance of the system. Because two volumetric expanders are used for the HT and LT loop, the sizes of two expanders are very important for the optimization of the system. The effects of pressure ratio of the HT loop, considering the size of the HT expander, and the condensation temperature of LT loop on the performance of the system at a target engine condition were investigated. This study shows that about 20% of additional power from the engine waste heat recovery can be obtained at the target engine condition.

Performance Analysis of an Oxy-fuel Combustion Power Generation System Based on Waste Heat Recovery: Influence of CO2 Capture (배열회수형 순산소연소 발전시스템의 성능해석: CO2 포집의 영향)

  • Tak, Sang-Hyun;Park, Sung-Ku;Kim, Tong-Seop;Sohn, Jeong-Lak;Lee, Young-Duk
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.33 no.12
    • /
    • pp.968-976
    • /
    • 2009
  • As the global warming becomes a serious environmental problem, studies of reducing $CO_2$ emission in power generation area are in progress all over the world. One of the carbon capture and storage(CCS) technologies is known as oxy-fuel combustion power generation system. In the oxy-fuel combustion system, the exhaust gas is mainly composed of $CO_2$ and $H_2O$. Thus, high-purity $CO_2$ can be obtained after a proper $H_2O$ removal process. In this paper, an oxy-fuel combustion cycle that recovers the waste heat of a high-temperature fuel cell is analyzed thermodynamically. Variations of characteristics of $CO_2$ and $H_2O$ mixture which is extracted from the condenser and power consumption required to obtain highly-pure $CO_2$ gas were examined according to the variation of the condensing pressure. The influence of the number of compression stages on the power consumption of the $CO_2$ capture process was analyzed, and the overall system performance was also investigated.

Design Performance Analysis of Micro Gas Turbine-Organic Rankine Cycle Combined System (마이크로 가스터빈과 유기매체 랜킨사이클을 결합한 복합시스템의 설계 성능해석)

  • Lee Joon Hee;Kim Tong Seop
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.17 no.6
    • /
    • pp.536-543
    • /
    • 2005
  • This study analyzes the design performance of a combined system of a recuperated cycle micro gas turbine (MGT) and a bottoming organic Rankine cycle (ORC) adopting refrigerant (R123) as a working fluid. In contrast to the steam bottoming Rankine cycle, the ORC optimizes the combined system efficiency at a higher evaporating pressure. The ORC recovers much greater MGT exhaust heat than the steam Rankine cycle (much lower stack temperature), resulting in a greater bottoming cycle power and thus a higher combined system efficiency. The optimum MGT pressure ratio of the combined system is very close to the optimum pressure ratio of the MGT itself. The ORC's power amounts to about $25\%$ of MGT power. For the MGT turbine inlet temperature of $950^{\circ}C$ or higher, the combined system efficiency, based on shaft power, can be higher than $45\%$.