DOI QR코드

DOI QR Code

A Study on the Refrigerant Characteristics of the Organic Rankine Cycle Power System Using the Waste Heat of the Main Propulsion Engine

선박 주 추진 엔진폐열을 이용하는 고온도차발전시스템의 냉매특성에 관한 연구

  • Song, Young-uk (Value-max Maritime Technology) ;
  • Jee, Jae-hoon (Division of Korea Coast Guard, Mokpo National Maritime University) ;
  • Park, Sang-kyun (Division of Marine System Engineering, Korea Maritime & Ocean University) ;
  • Oh, Cheol (Division of Marine System Engineering, Korea Maritime & Ocean University)
  • 송영욱 ;
  • 지재훈 (목포해양대학교 해양경찰학부) ;
  • 박상균 (한국해양대학교 기관시스템공학부) ;
  • 오철 (한국해양대학교 기관시스템공학부)
  • Received : 2021.06.09
  • Accepted : 2021.10.28
  • Published : 2021.10.31

Abstract

In this study, it shows the efficiency of each refrigerant through simulation method for ORC (Organic Rankine Cycle) power generation that converts waste heat discarded by ship exhaust into electricity for the purpose of reducing CO2 emission and increasing ship waste heat recovery. by Simulation was performed with waste heat from the exhaust gas which is relatively high temperature and cooling sea water which is relatively low temperature from ships. As a result of the sea water cooling ORC power generating system, efficiency of the working fluid with R717 is highest as a 2.86 % and the next working fluid is R152a, R134a, R143a and R125a.

본 연구에서는 CO2 가스 배출 저감 및 선박 폐열 회수 증대를 목적으로 선박 배기로 버려지는 폐열을 전기로 변환하는 ORC(Organic Rankine Cycle) 발전에 대해 시뮬레이션을 통한 냉매별 효율을 보여주고 있다. 상대적으로 고온인 배기가스의 폐열과 상대적으로 저온인 냉각해수를 이용하여 Aspen HYSYS 11을 이용하여 시뮬레이션을 수행하였다. 해수냉각 ORC 발전시스템의 시뮬레이션 결과, 작동유체 효율은 R717 냉매가 2.86 %로 가장 높았고, 다음 순으로 R152a, R134a, R143a, R125a로 나타났다.

Keywords

Acknowledgement

이 논문은 2021년도 연구개발특구진흥재단의 재원으로 기술사업화 역량강화사업(후속고도화, 2021-BS-RD0115)의 지원을 받아 수행된 연구임.

References

  1. Aspen HYSYS Thermodynamics COM Interface(2020), Aspen Technology, Inc,
  2. EPA(2020), Environmental Protection Agency, Inventory of U.S. Greenhouse Gas emissions and Sinks. 13. Apr. 2020.
  3. Han, T. C. and C. M. Wang(2021), Shipping Bunker Cost Risk Assessment and Management during the coronavirus oil shock, MDPI, Substainability, 13, 4998. https://doi.org/10.3390/su13094998.
  4. International Energy Outlook(2017), EIA (U.S. En-ergy Information Administration), www.eia.gov/ieo.
  5. Jung, R. T.(2011), Recent International Development on the Technical and Operational Measures of IMO's CO2 Emission Control From Ships, The Korean Society for Marine Environment and Energy, Vol. 14, No. 1, pp. 65-71. https://doi.org/10.7846/JKOSMEE.2011.14.1.065
  6. Kim, J. H., J. H. Kim, and J. Y. Lee(2018), International Maritime Technology Law Trends-IMO for reducing ship's greenhouse gas initial strategy, BSNAK, Vol. 55, No. 2, pp. 24-27.
  7. KR(2021), Korean Register, News Flash of MEPC 76 and ISWG-GHG 8, 2021.
  8. Lee, H. S., D. H. Jung, S. W. Hong, and H. J. Kim(2011), Performance Analysis of Closed-type OTEC Cycle using Waste Heat, The Korean Society for Marine Environment and Energy, Vol. 25, No. 1, pp. 80-84
  9. Lim, W. G., J. W. Do, and E. S. Yim(2018), Characteristics of Calorific Values for Bunker C Fuel Oilby Sulfur Contents, J. Korean Soc. Mar. Environ. Energy, Vol. 21, No. 4, pp. 328-333. https://doi.org/10.7846/JKOSMEE.2018.21.4.328
  10. Oh, C. and Y. U. Song(2012), A study on the ship's ORC power system using seawater temperature difference, Journal of e-navigation, Vol. 36, No. 5, pp. 349-355.
  11. Sidiqi, A. and B. Atakan(2011), Investigation of the Criteria for Fluid Selection in Rankine Cycles for Waste Heat Recovery, International Journal of Thermodynamics (IJoT), Vol. 14, No. 3.
  12. Solkatherm SES36 User manual & Data sheet, SOLVY CHEMICAL, http://www.solvaychemicals.com.