• 제목/요약/키워드: Recovery of adsorption capacity

검색결과 54건 처리시간 0.033초

Effects of Ionic Speciation of Lysine on Its Adsorption and Desorption Through a Sulfone-type Ion-Exchange Column

  • Choi, Dong-Hyouk;Lee, Ki-Say
    • Journal of Microbiology and Biotechnology
    • /
    • 제17권9호
    • /
    • pp.1527-1532
    • /
    • 2007
  • Lysine produced during microbial fermentation is usually recovered by an ion-exchange process, in which lysine is first converted to the cationic form (by lowering the pH to less than 2.0 with sulfuric acid) and then fed to a cationexchange column containing an exchanger that has a sulfone group with a weak counterion such as NH;. Ammonia water with a pH above 11 is then supplied to the column to displace the purified lysine from the column and allow its recovery. To enhance the adsorption capacity and for a possible reduction in chemical consumption, monovalent lysine fed at pH 4 was investigated in comparison with conventional divalent lysine fed at pH 1.5. The adsorption capacity increased by more than 70% on a mass basis using pH 4 feeding compared with pH 1.5 feeding. Lysine adsorbed at pH 4 started to elute earlier than that adsorbed at pH 1.5 when ammonia water was used as the eluant solution, and the extent of early elution became more notable at lower concentrations of ammonia. Moreover, the elution of monovalent lysine fed at pH 4 displayed a stiffer front boundary and higher peak concentration. However, when the ammonium concentration was greater than 2.0 N, complete saturation of the bed was delayed during adsorption and the percent recovery yield from elution was lowered., both drawbacks that were considered inevitable features originating from the increased adsorption of monovalent lysine.

실리카겔-물계 흡착식 냉동기에 관한 실험적 연구 (An Experimental Study of Adsorption Chiller using Silica gel-Water)

  • 권오경;윤재호;김종하
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2006년도 하계학술발표대회 논문집
    • /
    • pp.1119-1124
    • /
    • 2006
  • The objectives of this paper are to investigate the performance of silica gel-water adsorption refrigeration system with heat recovery process from the system experiment. This system can be driven by waste heat at near ambient temperature from $60^{\circ}C$ to $90^{\circ}C$. The cooling capacity and coefficient of performance(COP) were measured from various experimental conditions. An experimental results revealed the influence of operating temperatures(hot, cooling and chilled water), water flow rates, and adsorption-desorption cycle times on cooling capacity and COP. Under the standard conditions of $80^{\circ}C$ hot water, $25^{\circ}C$ cooling water, $14^{\circ}C$ chilled water inlet temperatures and 420sec cycle time, a cooling capacity of 1.14kW and a COP for cooling of 0.55 can be achieved.

  • PDF

활성탄의 기공구조에 따른 아세톤 증기와 톨루엔 증기의 흡착 및 탈착특성 비교 (Comparison of Adsorption and Desorption Characteristics of Acetone Vapor and Toluene Vapor on Activated Carbons According to Pore Structure)

  • 이송우;나영수;안창덕;이민규
    • 한국환경과학회지
    • /
    • 제21권10호
    • /
    • pp.1195-1202
    • /
    • 2012
  • The purpose of this work is to study the adsorption and desorption characteristics of acetone vapor and toluene vapor from adsorption tower in the VOCs recovery device. The six kinds of activated carbon with different pore structures were used and the adsorption and desorption characteristics were compared according to pore structure, desorption temperature, and adsorption method, respectively. Adsorption capacity of acetone vapor and toluene vapor by batch method was higher than that by dynamic method. Especially, activated carbon with medium-sized or large pores had more difference in adsorption capacity according to adsorption methods as a result of gradually condensation of vapors on relatively mesopore and large pores. Activated carbons with relatively large pores and relatively small saturated adsorption capacity had excellent desorption ability.

Mg/Al Impregnated Biochar for the Removal and Recovery of Phosphates and Nitrate

  • Kim, Dong-Jin
    • 한국환경과학회:학술대회논문집
    • /
    • 한국환경과학회 2019년도 정기학술대회 발표논문집
    • /
    • pp.134-134
    • /
    • 2019
  • Utilization of organic waste as a renewable energy source is promising for sustainability and mitigation of climate change. Pyrolysis converts organic waste to gas, oil, and biochar by incomplete biomass combustion. Biochar is widely used as a soil conditioner and adsorbent. Biochar adsorbs/desorbs metals and ions depending on the soil environment and condition to act as a nutrient buffer in soils. Biochar is also regarded as a carbon storage by fixation of organic carbon. Phosphorus (P) and nitrogen (N) are strictly controlled in many wastewater treatment plants because it causes eutrophication in water bodies. P and N is removed by biological and chemical methods in wastewater treatment plants and transferred to sludge for disposal. On the other hand, P is an irreplaceable essential element for all living organisms and its resource (phosphate rock) is estimated about 100 years of economical mining. Therefore, P and N recovery from waste and wastewater is a critical issue for sustainable human society. For the purpose, intensive researches have been carried out to remove and recover P and N from waste and wastewater. Previous studies have shown that biochars can adsorb and desorbed phosphates implying that biochars could be a complementary fertilizer. However, most of the conventional biochar have limited capacity to adsorb phosphates and nitrate. Recent studies have focused on biochar impregnated with metal salts to improve phosphates and nitrate adsorption by synthesizing biochars with novel structures and surface properties. Metal salts and metal oxides have been used for the surface modification of biochars. If P removal is the only concern, P adsorption kinetics and capacity are the only important factors. If both of P and N removal and the application of recovery are concerned, however, P and N desorption characteristics and bioavailability are also critical factors to be considered. Most of the researches on impregnated biochars have focused on P removal efficiency and kinetics. In this study, coffee waste is thermally treated to produce biochar and it was impregnated with Mg/Al to enhance phosphates and nitrate adsorption/desorption and P bioavailability to increase its value as a fertilizer. Kinetics of phosphates and nitrate adsorption/desorption and bioavailability analysis were carried out to estimate its potential as a P and N removal adsorbent in wasewater and a fertilizer in soil.

  • PDF

하수고도처리에서 층상이중수화물을 이용한 인산 이온교환 특성 (Characteristics of Ion Exchange of Phosphate using Layered Double Hydroxides in Advanced Wastewater Treatment)

  • 송지현;신승규;이상협;박기영
    • 한국물환경학회지
    • /
    • 제22권6호
    • /
    • pp.991-995
    • /
    • 2006
  • The layered double hydroxide with the insertion of chloride ions (LDH-Cl), which was synthesized by the co-precipitation method, was applied to investigate the fundamental aspects of the absorptive agent for phosphate removal from wastewater. The adsorption capacity was best described by the Langmuir-FreundIich isotherm, and the estimated isotherm parameters indicate that the LDH-CI capacity for the phosphate removal is much higher than that observed using a natural adsorbent material such iron oxide tailing. The kinetic experiment also showed that the LDH-Cl adsorption reaction rapidly at the adsorptive rate of 0.55 mg-P/g-LDH/min, implying that this adsorbent can be of use in the full-scale applications. The pH had a minimal effect on the LDH adsorption capacity in the range of 5 to 11, although the capacity dropped at the low pHs because of the change in LDH surface properties. Furthermore, other anions such as $Cl^-$ and $NO_3{^-}$ commonly found in the wastewater streams insignificantly affected the phosphate removal efficiencies, while $HCO_3{^-}$ ions had a negative effect on the LDH adsorption capacity due to its high selectivity. The phosphate removal experiment using the actual secondary effluent from a wastewater treatment plant showed the similar decrease in adsorption capacity, indicating that the bicarbonate ions in the wastewater were competing with phosphate for the adsorptive site in the surface of the LDH-Cl. Overall, the synthetic adsorbent material, LDH-Cl, can be a feasible alternative over other conventional chemical agents, since the LDH-Cl exhibits the high phosphate removal capacity with the low sensitivity to other environmental conditions.

공냉식 방사형 열교환기를 갖는 흡착식 히트펌프의 성능 (Performance of adsorption heat pump with radial shape adsorber heat exchanger for air cooling)

  • 백남춘;양윤섭;윤응상;이진국;주문창
    • 설비공학논문집
    • /
    • 제9권1호
    • /
    • pp.73-81
    • /
    • 1997
  • In this experimental study, the air cooling radial shape heat exchanger which influences on the COP and the cooling capacity by heat and mass transfer rate in the adsorbent bed was designed and applied to test its performance for adsorption heat pump(AHP). Zeolite-water was used for the adsorbent-adsorbat pair. As a result, the cooling COP and a cycle period of this adsorption heat pump are 0.28 and 2 hours, respectively, on the condition of none heat recovery from the adsorption reactor(absorber). The other results and recommendations are mainly related to improving the heat and mass transfer inside the absorber to reduce a cycle period.

  • PDF

킬레이트 흡착제(2,2'-Iminodibenzoic acid-가교 chitosan)의 합성과 Pb(II), Cu(II), Cd(II)의 흡착력에 관한 연구 (Synthesis of Chelating Adsorbent (2,2'-Iminodibenzoic Acid-crosslinked Chitosan) and Adsorptivity of Pb(II), Cu(II), Cd(II))

  • 심상균;류재준
    • 분석과학
    • /
    • 제11권6호
    • /
    • pp.452-459
    • /
    • 1998
  • 수산계 폐기물로부터 분리한 chitin을 epichlorohydrin과 반응시켜 가교 chitin을 제조한 후 탈아세틸화하여 가교 chitosan을 제조하였다. 가교 chitosan-OH를 가교 chitosan-Cl로 전환시킨 뒤 킬레이트 시약인 2,2'-Iminodibenzoic acid 염과 반응시켜 킬레이트 흡착제인 2,2'-Iminodibenzoic acid-가교 chitosan을 합성하였다. 그리고 합성된 흡착제를 이용하여 Pb(II), Cu(II), Cd(II)의 흡착과 회수 특성을 연구하였다. 흡착특성에 대한 실험 결과, pH가 증가할수록 흡착되는 금속 이온의 양이 증가함을 알 수 있었다. 최적 반응시간은 1시간, 흡착력은 Cu(II)

  • PDF

Adsorption and separation behaviors of Y(III) and Sr(II) in acid solution by a porous silica based adsorbent

  • Wu, Hao;Kawamura, Taiga;Kim, Seong-Yun
    • Nuclear Engineering and Technology
    • /
    • 제53권10호
    • /
    • pp.3352-3358
    • /
    • 2021
  • Aiming at selective adsorption and separation of Y(III) from the Y(III)-Sr(II) group in acid solution, a silica-based TODGA impregnated adsorbent [(TODGA+1-dodecanol)/SiO2-P-F600] has been prepared. Batch adsorption experiments were conducted under the effect of contact time, acid concentration, solution temperature, and adsorption capacity etc. Chromatography recovery of more than 90% Y(III) was successfully achieved under elution with 0.01 M DTPA solution in nitric acid adsorption system, and 0.1 M HCl solution in hydrochloride adsorption system, respectively.

SPME를 이용한 Geosmin과 2-MIB분석 시 잔류염소의 영향에 관한 연구 (Effect of Residual Chlorine on the Analysis of Geosmin and 2-MIB Using SPME (Solid Phase Microextraction))

  • 김성진;홍성호;민달기
    • 상하수도학회지
    • /
    • 제19권6호
    • /
    • pp.713-719
    • /
    • 2005
  • SPME (Soild phase microextraction) has been used in the analysis of many volatile organic compounds, such as geosmin and 2-methylisoborneol (2-MIB), trihalomethanes (THMs) in drinking water. SPME fiber is characterized by high adsorption capacity (DVB/CAR/PDMS, DVB/PDMS etc.). Although the highly active adsorption capacities of the SPME fiber are often to the chemical functional group, surface properties play a significant role in determining the surface adsorption capacities. The objectives of this study were to evaluate effect of residual chlorine on analysis of geosmin and 2-MIB. Image taken by SEM before preloaded with chlorine, the surface and porous media was almost perfect spherical shape and no clogging of pores. However, after preloaded with chlorine the surface was aggregated and pore was blocked. The recovery rate of geosmin and 2-MIB coexisting with chlorine was reduced by 35 to 62%. The recovery rate with preloaded with chlorine was reduced by 25 to 43%. The lower concentration of geosmin and 2-MIB and the higher concentration of chlorine existed in water, the lower the recovery rate was.

ZnO/SiO2 Prepared by Atomic Layer Deposition as Adsorbents of Organic Dye in Aqueous Solution and Its Photocatalytic Regeneration

  • Jeong, Bora;Jeong, Myung-Geun;Park, Eun Ji;Seo, Hyun Ook;Kim, Dae Han;Yoon, Hye Soo;Cho, Youn Kyoung;Kim, Young Dok
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2014년도 제46회 동계 정기학술대회 초록집
    • /
    • pp.167.2-167.2
    • /
    • 2014
  • In this work, ZnO shell on mesoporous $SiO_2$ ($ZnO/SiO_2$) was prepared by atomic layer deposition (ALD). Diethylzinc (DEZ) and $H_2O$ were used as precursor of ZnO shell. $ZnO/SiO_2$ sample was characterized by X-ray diffraction (XRD), N2 sorption isotherms, X-ray photoelectron spectroscopy (XPS), Scanning electron microscopy (SEM) and Fourier-transform infrared spectroscopy (FT-IR). $ZnO/SiO_2$ showed higher adsorption capacity of MB than that of bare mesoporous $SiO_2$ and the adsorption capacities of $ZnO/SiO_2$ could be regenerated by UV exposure through the photocatalytic degradation of the adsorbed MB. This system could be used for removing organic dye from water by adsorption and reused after saturation of adsorption due to its photocatalytic regeneration.

  • PDF