DOI QR코드

DOI QR Code

Adsorption and separation behaviors of Y(III) and Sr(II) in acid solution by a porous silica based adsorbent

  • Wu, Hao (Department of Quantum Science and Energy Engineering, Graduate School of Engineering, Tohoku University) ;
  • Kawamura, Taiga (Department of Quantum Science and Energy Engineering, Graduate School of Engineering, Tohoku University) ;
  • Kim, Seong-Yun (Department of Quantum Science and Energy Engineering, Graduate School of Engineering, Tohoku University)
  • Received : 2021.01.08
  • Accepted : 2021.04.07
  • Published : 2021.10.25

Abstract

Aiming at selective adsorption and separation of Y(III) from the Y(III)-Sr(II) group in acid solution, a silica-based TODGA impregnated adsorbent [(TODGA+1-dodecanol)/SiO2-P-F600] has been prepared. Batch adsorption experiments were conducted under the effect of contact time, acid concentration, solution temperature, and adsorption capacity etc. Chromatography recovery of more than 90% Y(III) was successfully achieved under elution with 0.01 M DTPA solution in nitric acid adsorption system, and 0.1 M HCl solution in hydrochloride adsorption system, respectively.

Keywords

References

  1. A. Pashazadeh, E. de Paiva, N. Mahmoodian, M. Friebe, Calculation of beta radiation dose of a circular Y-90 skin patch: analytical and simulation methods, Radiat. Phys. Chem. 166 (2020) 108491, https://doi.org/10.1016/j.radphyschem.2019.108491.
  2. C. Ince, O. karadeniz, T. Ertay, H. Durak, Collimator and energy window optimization for YTTRIUM-90 bremsstrahlung SPECT imaging, Appl. Radiat. Isot. 167 (2021) 109453, https://doi.org/10.1016/j.apradiso.2020.109453.
  3. G. Sgouros, L. Bodei, M.R. McDevitt, J.R. Nedrow, Radiopharmaceutical therapy in cancer: clinical advances and challenges, Nat. Rev. 19 (2020) 589-608, https://doi.org/10.1038/s41573-020-0073-9.
  4. R. Chakravarty, S. Chakraborty, S. Jadhav, A. Dash, Facile radiochemical separation of clinical-grade 90Y from 90Sr by selective precipitation for targeted radionuclide therapy, Nucl. Med. Biol. 69 (2019) 58-65, https://doi.org/10.1016/j.nucmedbio.2019.01.002.
  5. M.L. Salutsky, H.W. Kirby, Preparation and half life of carrier-free Yttrium-90, Anal. Chem. 27 (1955) 567-569, https://doi.org/10.1021/ac60100a024.
  6. K. Roy, P.K. Mohapatra, N. Rawat, D.K. Pal, S. Basu, V.K. Manchanda, Separation of 90Y from 90Sr using zirconium vanadate as the ion exchanger, Appl. Radiat. Isot. 60 (2004) 621-624. https://doi:10.1016/j.apradiso.2003.09.015.
  7. P. Kandwal, S.A. Ansari, P.K. Mohapatra, V.K. Manchanda, Separation of carrier free 90Y from 90Sr by hollow fiber supported liquid membrane containing bis(2-ethylhexyl) phosphonic acid, Separ. Sci. Technol. 46 (2011) 904-911, https://doi.org/10.1080/01496395.2010.541402.
  8. M. Hemmati, M. Rajabi, A. Asghari, Magnetic nanoparticle based solid-phase extraction of heavy metal ions: a review on recent advances, Microchim. Acta 185 (2018) 160, https://doi.org/10.1007/s00604-018-2670-4.
  9. N.K. Soliman, A.F. Moustafa, Industrial solid waste for heavy metals adsorption features and challenges; a review, J. Mater. Res. Technol. 9 (2020) 10235-10253, https://doi.org/10.1016/j.jmrt.2020.07.045.
  10. W.J. Mu, Q.H. Yu, J.Y. Gu, X.L. Li, Y.C. Yang, H.Y. Wei, S.M. Peng, Bonding of crown ethers to α-zirconium phosphat-dnovel layered adsorbent for radioactive strontium separation, Separ. Purif. Technol. 240 (2020) 116658, https://doi.org/10.1016/j.seppur.2020.116658.
  11. T. Kawamura, T. Ito, S.Y. Kim, Adsorption and separation behavior of strontium and yttrium using a silica-based CMPO adsorbent, J. Radioanal. Nucl. Chem. 320 (2019) 9-14, https://doi.org/10.1007/s10967-019-06446-4.
  12. F. Gritti, G. Guiochon, Adsorption mechanism in RPLC. Effect of the nature of the organic modifier, Anal. Chem. 77 (2005) 4257-4272, https://doi.org/10.1021/ac0580058.
  13. Y. Wu, C.P. Lee, H. Mimura, X.X. Zhang, Y.Z. Wei, Stable solidification of silicabased ammonium molybdophosphate by allophane: application to treatment of radioactive cesium in secondary solid wastes generated from fukushima, J. Hazard Mater. 341 (2018) 46-54, https://doi.org/10.1016/j.jhazmat.2017.07.044.
  14. Y. Wu, S.Y. Kim, D. Tozawa, T. Ito, T. Tada, K. Hitomi, E. Kuraoka, H. Yamazaki, K. Ishii, Equilibrium and kinetic studies of selective adsorption and separation for strontium using DtBuCH18C6 loaded resin, J. Nucl. Sci. Technol. 49 (2012) 320-327, https://doi.org/10.1080/00223131.2012.660022.
  15. W. Zhang, S.Q. Yu, S.C. Zhang, J. Zhou, S.Y. Ning, X.P. Wang, Y.Z. Wei, Separation of scandium from the other rare earth elements with a novel macroporous silica-polymer based adsorbent HDEHP/SiO2-P, Hydrometallurgy 185 (2019) 117-124, https://doi.org/10.1016/j.hydromet.2019.01.012.
  16. S.Y. Ning, S.C. Zhang, W. Zhang, J. Zhou, S.Y. Wang, X.P. Wang, Y.Z. Wei, Separation and recovery of Rh, Ru and Pd from nitrate solution with a silica based IsoBu-BTP/SiO2-P adsorbent, Hydrometallurgy 191 (2020) 105207, https://doi.org/10.1016/j.hydromet.2019.105207.
  17. L. Chaabane, E. Beyou, A.E. Ghali, M.H.V. Baouab, Comparative studies on the adsorption of metal ions from aqueous solutions using various functionalized graphene oxide sheets as supported adsorbents, J. Hazard Mater. 389 (2020) 121839, https://doi.org/10.1016/j.jhazmat.2019.121839.
  18. S. Sahu, L. Mallik, S. Pahi, B. Barik, U.K. Sahu, M. Sillanpaa, R.K. Patel, Facile synthesis of poly o-toluidine modified lanthanum phosphate nanocomposite as a superior adsorbent for selective fluoride removal: a mechanistic and kinetic study, Chemosphere 252 (2020) 126551, https://doi.org/10.1016/j.chemosphere.2020.126551.
  19. Y. Wu, X.X. Zhang, S.Y. Kim, Y.Z. Wei, Simultaneous separation and recovery of Cs(I) and Sr(II) using a hybrid macrocyclic compounds loaded adsorbent. Kinetic, equilibrium and dynamic adsorption studies, J. Nucl. Sci. Technol. 53 (2016) 1968-1977, https://doi.org/10.1080/00223131.2016.1175979.
  20. S.A. Ansari, P.N. Pathak, V.K. Manchanda, M. Husain, A.K. Prasad, V.S. Parmar, N,N,N',N'-Tetraoctyl Diglycolamide (TODGA): A promising extractant for actinide-partitioning from high-level waste (HLW), Solvent Extr. Ion Exch. 23 (2005) 463-479, https://doi.org/10.1081/SEI-200066296.
  21. A.M. Alasadi, F.I. Khaili, A.M. Awwad, Adsorption of Cu(II), Ni(II) and Zn(II) ions by nano kaolinite: thermodynamics and kinetics studies, Chem. Int. 5 (2019) 258-268, https://doi.org/10.5281/zenodo.2644985.
  22. M.A. Hubbe, S. Azizian, S. Douven, Implications of apparent pseudo-second-order adsorption kinetics onto cellulosic materials: a review, Bioresources 14 (2019) 7582-7626. https://doi.org/10.15376/biores.14.3.7582-7626
  23. S. Dutta, P.K. Mohapatra, V.K. Manchanda, Separation of 90Y from 90Sr by a solvent extraction method using N,N,N',N'-tetraoctyl diglycolamide (TODGA) as the extractant, Appl. Radiat. Isot. 69 (2011) 158-162, https://doi.org/10.1016/j.apradiso.2010.09.016.
  24. P.N. Pathak, S.A. Ansari, S. Kumar, B.S. Tomar, V.K. Manchanda, Dynamic light scattering study on the aggregation behaviour of N,N,N',N'-tetraoctyl diglycolamide (TODGA) and its correlation with the extraction behavior of metal ions, J. Colloid Interface Sci. 342 (2010) 114-118, https://doi.org/10.1016/j.jcis.2009.10.015.
  25. D.M. Brigham, A.S. Ivanov, B.A. Moyer, L.H. Delmau, V.S. Bryantsev, R.J. Ellis, Trefoil-shaped outer-sphere ion clusters mediate lanthanide(III) ion transport with diglycolamide ligands, J. Am. Chem. Soc. 139 (2017) 17350-17358, https://doi.org/10.1021/jacs.7b07318.
  26. N. Can, B.C. Omur, A. Altindal, Modeling of heavy metal ion adsorption isotherms onto metallophthalocyanine film, Sensor. Actuator. B Chem. 237 (2016) 953-961, https://doi.org/10.1016/j.snb.2016.07.026.
  27. P.A. Milani, K.B. Debs, G. Labuto, E.N. Vasconcelos, Martins Carrilho Agricultural solid waste for sorption of metal ions: part I-characterization and use of lettuce roots and sugarcane bagasse for Cu(II), Fe(II), Zn(II), and Mn(II) sorption from aqueous medium, Environ. Sci. Pollut. Res. 25 (2018) 35895-35905, https://doi.org/10.1007/s11356-018-1615-0.
  28. M. Sharma, J. Singh, S. Hazra, S. Basu, Adsorption of heavy metal ions by mesoporous ZnO and TiO2@ZnO monoliths: adsorption and kinetic studies, Microchem. J. 145 (2019) 105-112, https://doi.org/10.1016/j.microc.2018.10.026.
  29. L. Li, W. Lu, D.X. Ding, Z.R. Dai, C. Cao, L. Liu, T. Chen, Adsorption properties of pyrene-functionalized nano-Fe3O4 mesoporous materials for uranium, J. Solid State Chem. 27 (2019) 666-673, https://doi.org/10.1016/j.jssc.2018.12.030.

Cited by

  1. Adsorption of N,N,N′,N′-Tetraoctyl Diglycolamide on Hypercrosslinked Polysterene from a Supercritical Carbon Dioxide Medium vol.27, pp.1, 2021, https://doi.org/10.3390/molecules27010031