• 제목/요약/키워드: Recovery angle

검색결과 278건 처리시간 0.029초

한산 모시의 역학적 특성 및 태에 관한 연구(제1보) (Mechanical Properties and Fabric Handle of kansan Bamie (Part I))

  • 홍지명;유효선
    • 한국의류학회지
    • /
    • 제21권8호
    • /
    • pp.1315-1322
    • /
    • 1997
  • Ramie is one of the traditional fabrics in Korea, and very comfortable fabric for summer clothes because it has a high moisture-absorbing and transporting property. Futhermore ramie is very popular and Koreans prefer its handle for summer clothes. The kansan ramie has better quality as fibers and can be weaved as fine fabrics which are famous as kansan Fine ramie. Even though the good quality of kansan ramie has known widely, very few research work have been carried out on kansan ramie in the field of textile science. In this study, the analysis of the physical and chemical characteristics of Hansan ramie was conducted by using two different kinds of Hansan ramie: Hansan Fine ramie and kansan Coarse ramie. In addition, the same experiment was held on the one kind of chinese ramie to be compared with those of Hansan ramie. The following results were obtained from this experimental study. By the analysis of chemical composition of ramie, the similar chemical composition (a -cellulose: 83∼85%, pectin substances: 2.81∼ 3.01%) were found from all of the ramie fabrics used in this study. It has shown that Hansan coarse ramie has the highest toughness value and wrinkle recovery angle among the samples used in this study. From the result of KES-F system, it was found that Hansan Coarse ramie which is composed with the thicker yarns has the highest value on the bending properties, 2HG and surface properties. The primary hand value was also calculated by KN-203 LDY and value of Koshi was shown as the order of kansan coarse ramie> Chinese ramie> kansan fine ramie, and Hansan fine ramie had shown the highest Numeri and Fukurami value among the 3 samples used in this study.

  • PDF

PEO-PPO-PEO 블록 공중합체를 이용한 PDMS의 친수성 표면 개질 방법 (Surface Modification of PDMS for Hydrophilic and Antifouling Surface Using PEO-PPO-PEO Block Copolymer)

  • 이병진;진시형;정성근;강경구;이창수
    • Korean Chemical Engineering Research
    • /
    • 제55권6호
    • /
    • pp.791-797
    • /
    • 2017
  • 본 연구에서는 Poly (dimethylsiloxane) (PDMS)의 높은 소수성과 생체분자들의 비특이적 흡착 문제를 해결하기 위해 PEO-PPO-PEO 블록 공중합체의 포매(embeddeing) 방식을 이용하여 손쉬운 표면 개질 및 이의 최적화 조건을 조사하였다. 친수성 표면 개질의 특성은 PDMS 내에 포매된 블록 공중합체의 농도, 수침(water-soaking), 및 소수성 표면으로 회복 시간 등의 영향을 평가하였다. 개질된 PDMS 표면은 알부민 단백질(2 mg/ml)까지 단백질의 비특이적 결합 방지 특성을 보였으며, 또한 O/W (Oil-in-Water) 에멀젼을 쉽게 형성할 수 있었다.

어깨관절의 이마면과 어깨면에서 벌림각도에 따른 중간 등세모근과 아래 등세모근의 근 활성도 비교 (A Comparison of EMG Activity for the Middle and Lower Trapezius Muscle in the Frontal and Scapular Plane According to Shoulder Abduction Angles)

  • 김병곤;이명희
    • PNF and Movement
    • /
    • 제14권2호
    • /
    • pp.131-137
    • /
    • 2016
  • Purpose: The purpose of this study was to compare muscle activities in the frontal plane and scapular plane of the middle fiber and lower fiber of the trapezius muscle at different shoulder abduction angles. Methods: Twenty male and female students in their 20s participated in this study. Each subject maintained shoulder abduction at $75^{\circ}$, $90^{\circ}$, $125^{\circ}$, and $160^{\circ}$ in a standing position and repeated motions three times each in the frontal plane and the scapular plane. While maintaining the motions for 10 seconds in each posture, surface electromyography (EMG) was used to measure muscle activity of the middle fiber and lower fiber of the trapezius muscle. The collected EMG data were normalized using maximal voluntary isometric contraction (MVIC). Differences in muscle activity of the middle fiber and lower fiber of the trapezius muscles according to the angles at each plane were statistically processed using repeated measured analysis of variance, and an independent t-test was used to examine the differences between the two planes at each angle. Results: Muscle activity of the middle and lower trapezius during shoulder abduction in the frontal plane and scapular plane significantly increased as the angles increased (p<.05). However, muscle activity of the middle trapezius was significantly lower in the scapular plane than in the frontal plane for all shoulder abduction angles (p<.05). Conclusion: The results of this study suggest that during shoulder abduction, angles should be different according to the goals, and for training during an acute phase or early phase for functional recovery, it is more efficient to perform the training in the scapular plane than in the frontal plane.

SUS304L 튜브의 U-Bending 성형공정에 관한 해석적·실험적 연구 (Numerical and Experimental Study of U-Bending of SUS304L Heat Transfer Tubes)

  • 김유범;강범수;구태완
    • 소성∙가공
    • /
    • 제23권7호
    • /
    • pp.405-412
    • /
    • 2014
  • As a major type of heat exchanger, the steam generator (SG) produces steam from heat energy of a nuclear power plant reactor. The steam produced by the steam generator flows into a turbine, and plays an important role in electric power generation. The heat transfer tubes in the steam generator consist of approximately 10,000 U-shaped tubes, which perform a structural role and act as thermal boundaries. The heat transfer tubes conduct the thermal energy between the primary coolant (about $320^{\circ}C$, $157kgf/cm^2$) obtained from the reactor and the secondary coolant (about $260^{\circ}C$, $60kgf/cm^2$) as part of the secondary system. Recently, the heat transfer tubes in the steam generator of the pressurized water reactor (PWR) are primarily produced from Alloy 600 and Alloy 690 seamless tubes. As a pilot study to find process parameters for the cold U-bending process using rotary draw bending, numerical and experimental investigations were conducted to produce U-shaped tubes from long straight SUS304L seamless tubes. 3D finite element simulations were run using ABAQUS Explicit with consideration of the elastic recovery. The process parameters studied were the angular speed, the operation period and the bending angle. Experimental verifications were conducted to insure the suitability of the final U-shaped configurations with respect to both ovality and wall thickness.

스쿼트 동작 시 웨이트 벨트 착용 전·후에 따른 운동역학적 분석 (Sports Biomechanical Analysis before and after Applying Weight Belt during Squat Exercise)

  • 이정기;허보섭;김용재;이효택
    • 수산해양교육연구
    • /
    • 제28권4호
    • /
    • pp.893-902
    • /
    • 2016
  • The purpose of this study is to investigate the effect of wearing a weightlifting belt, which is an auxiliary equipment used during squat, by measuring and analyzing biomechanical difference in lower limb and proposing safer and to suggest a more effective exercise method for general population. Selected 8 male participants in their 20s who have not performed regular resistance exercise for at least a year, but have experience of performing squat. The comprehensive method of study is as follows: subjects were notified of the purpose of the study and were told to practice warm-up and the squat motion for the experiment for 20 minutes. When the participant believed they were ready to begin, the experiment was started. At controlled points, foot pressure distribution sensor has been installed. Then left and right feet have been placed on the pressure distribution sensor, from which data for successful squat position that does not satisfy the criteria for failure have been collected and computed with Kwon3D XP program and TPScan program. For data processing of this study, SPSS 21.0 was used to calculated mean (M) and standard deviation (SD) of the analyzed values, and paired t-test has been conducted to investigate the difference before and after wearing the weightlifting belt, with p-value of ${\alpha}<.05$. As for time consumed depending on usage of weightlifting belt in squat, statistically significant difference has been found in P2, which is recovery movement. Lower limb angle depending on usage of weightlifting belt in squat has shown statistically significant difference in E1 foot joint(p<. 001). There has been statistically significant difference in E2 knee joint. Foot pressure percentage depending on usage of weightlifting belt in squat were found to be statistically significant (p<. 01) in both regions of anterior and posterior foot.

Comparison study of the effect of blending method on PVDF/PPTA blend membrane structure and performance

  • Li, Hongbin;Shi, Wenying;Zhang, Yufeng;Zhou, Rong
    • Membrane and Water Treatment
    • /
    • 제6권3호
    • /
    • pp.205-224
    • /
    • 2015
  • A novel hydrophilic poly (vinylidene fluoride)/poly (p-phenylene terephthalamide) (PVDF/PPTA) blend membrane was prepared by in situ polycondensation of p-phenylene diamine (PPD) and terephthaloyl chloride (TPC) in PVDF solution with subsequent nonsolvent induced phase separation (NIPS) process. For comparison, conventional solution blend membrane was prepared directly by adding PVDF powder into PPTA polycondensation solution. Blend membranes were characterized by means of viscometry, X-ray photoelectron spectroscopy (XPS), Field Emission Scanning Electron Microscopy (FESEM). The effects of different blending methods on membrane performance including water contact angle (WCA), mechanical strength, anti-fouling and anti-compression properties were investigated and compared. Stronger interactions between PVDF and PPTA in in situ blend membranes were verified by viscosity and XPS analysis. The incorporation of PPTA accelerated the demixing rate and caused the formation of a more porous structure in blend membranes. In situ blend membranes exhibited better hydrophilicity and higher tensile strength. The optimal values of WCA and tensile strength were $65^{\circ}$ and 34.1 MPa, which were reduced by 26.1% and increased by 26.3% compared with pure PVDF membrane. Additionally, antifouling properties of in situ blend membranes were greatly improved than pure PVDF membrane with an increasing of flux recovery ratio by 25%. Excellent anti-compression properties were obtained in in situ blend membranes with a stable pore morphology. The correlations among membrane formation mechanism, structure and performance were also discussed.

준 1차원 모델을 적용한 이중연소 램제트 해석 (Analysis of Dual Combustion Ramjet Using Quasi 1D Model)

  • 최종호;박익수;길현용;황기영
    • 한국추진공학회지
    • /
    • 제17권6호
    • /
    • pp.81-88
    • /
    • 2013
  • Taylor-Maccoll 유동관계식과 준 1차원 모델을 적용한 구성품 기반의 이중램제트 추진기관 모델 개발에 대해 기술하였다. 이중램제트 흡입구는 Taylor Maccoll 유동관계식을 적용하여 콘 각도 $25^{\circ}$ 형상을 갖는 흡입구에 대해 아음속 및 초음속 흡입구 모델을 구현하였으며 예 연소가스를 초음속 연소기로 전달하는 기능의 가스발생기는 Lumped 모델을 적용하여 모델을 구현하였고 요구되는 노즐목 크기에 대해 기술하였다. 초음속 연소기의 경우 준 1차원 모델을 적용하여 위치에 따른 마하수 변화, 온도변화 및 압력변화 등을 제시하였다. 또한 금번 모델을 이용하여 당량비 및 압력회복율을 고려한 연료량 조절모델에 따른 추력과 비추력을 계산하여 그 결과를 제시하였다.

전기분사를 이용한 양성담관 협착 치료용 약물방출 스텐트 개발 (Development of Drug Eluting Stent for the Treatment of Benign Biliary Stricture by Electro-spray Method)

  • 신일균;김동곤;김한기;김상호;전동민;서태석;장홍석
    • 폴리머
    • /
    • 제36권2호
    • /
    • pp.163-168
    • /
    • 2012
  • 최근에 내시경 관련기술의 진보에 따라서 시술 편리성, 회복시간 단축, 환자 고통 경감 등의 장점으로 인해 스텐트 삽입술이 빠르게 진보하였다. 본 연구에서 양성담관 협착 치료를 목적으로 파클리탁셀을 이용한 약물방출 스텐트를 전기분사 방법에 의해 제조하였으며, 이 때 사용된 고분자는 polyether-based polyurethane(상표명 : PELLETHANE 2363-80AE$^{(R)}$)과 첨가제로서 Pluronic F127, 약물로서 파클리탁셀을 사용하여 금속스텐트 표면에 코팅하였다. 그 결과로서, 약물이 코팅된 고분자 필름의 물리적 특성은 SEM, FTIR, 접촉각 측정기, XRD에 의해 확인하였으며, 약물방출속도는 약물함량이 높을수록 감소하였음을 알 수 있었다.

지하수 유동 방향에 대한 관정배열이 분배추적자 시험에 미치는 영향 분석 (An Experimental Study of the Effect of the Test-well Arrangement on the Partitioning Interwell Tracer Test for the Estimation of the NAPL Saturation)

  • 김보아;김용철;여인욱;고경석
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제19권3호
    • /
    • pp.111-122
    • /
    • 2014
  • Partitioning interwell tracer test (PITT) is a method to quantify and qualify a site contaminated with NAPLs (Non-Aqueous Phase Liquids). Analytical description of PITT assumes that the injection-pumping well pair is on the line of the ambient groundwater flow direction, but the test-well pair could frequently be off the line in a real field site, which could be an erroneous factor in analyzing PITT data. The purpose of this work is to study the influence of the angle of the test-well pair on the ambient groundwater flow direction based on the result from PITT. From the experiments, it was found that the obliqueness of the test-well pair to the ambient groundwater flow direction could affect the tracer test resulting in a decreased NAPL estimation efficiency. In case of an oblique arrangement of the test-well pair to the ambient flow direction, it was found that the injection of a chase fluid could enhance the estimation efficiency. An increase of the pumping rate could enhance the recovery rate but it cannot be said that a high pumping rate can increase the test efficiency because a high pumping rate cannot give partitioning tracers enough time to partition into NAPLs. The results have a implication that because the arrangement of the test-well pair is a controlling factor in performing and interpreting PITT in the field in addition to the known factors such as heterogeneity and the source zone architecture, flow direction should be seriously considered in arranging test-well pair.

Analytic simulator and image generator of multiple-scattering Compton camera for prompt gamma ray imaging

  • Kim, Soo Mee
    • Biomedical Engineering Letters
    • /
    • 제8권4호
    • /
    • pp.383-392
    • /
    • 2018
  • For prompt gamma ray imaging for biomedical applications and environmental radiation monitoring, we propose herein a multiple-scattering Compton camera (MSCC). MSCC consists of three or more semiconductor layers with good energy resolution, and has potential for simultaneous detection and differentiation of multiple radio-isotopes based on the measured energies, as well as three-dimensional (3D) imaging of the radio-isotope distribution. In this study, we developed an analytic simulator and a 3D image generator for a MSCC, including the physical models of the radiation source emission and detection processes that can be utilized for geometry and performance prediction prior to the construction of a real system. The analytic simulator for a MSCC records coincidence detections of successive interactions in multiple detector layers. In the successive interaction processes, the emission direction of the incident gamma ray, the scattering angle, and the changed traveling path after the Compton scattering interaction in each detector, were determined by a conical surface uniform random number generator (RNG), and by a Klein-Nishina RNG. The 3D image generator has two functions: the recovery of the initial source energy spectrum and the 3D spatial distribution of the source. We evaluated the analytic simulator and image generator with two different energetic point radiation sources (Cs-137 and Co-60) and with an MSCC comprising three detector layers. The recovered initial energies of the incident radiations were well differentiated from the generated MSCC events. Correspondingly, we could obtain a multi-tracer image that combined the two differentiated images. The developed analytic simulator in this study emulated the randomness of the detection process of a multiple-scattering Compton camera, including the inherent degradation factors of the detectors, such as the limited spatial and energy resolutions. The Doppler-broadening effect owing to the momentum distribution of electrons in Compton scattering was not considered in the detection process because most interested isotopes for biomedical and environmental applications have high energies that are less sensitive to Doppler broadening. The analytic simulator and image generator for MSCC can be utilized to determine the optimal geometrical parameters, such as the distances between detectors and detector size, thus affecting the imaging performance of the Compton camera prior to the development of a real system.