• Title/Summary/Keyword: Reconstruction resolution

Search Result 472, Processing Time 0.03 seconds

Ultrasonic Image of the Side Drilled Holes in SS Reference Block as Combining Bases of Support for Spatial Frequency Response

  • Koo, Kil-Mo;Song, Chul-Hwa;Beak, Won-Pil;Kang, Hee-Young
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.322-326
    • /
    • 2008
  • In this paper, we have studied the images which have been reconstructed by using combination of images acquired by the variation of operating frequency. When inner images have been reconstructed, they have been superposed by the surface state effect. In this case, the images of the phase object can be enhanced by the contrast of inner images. There is a kind of specimen, one is a reference block having 1/4T, 1/2T, 3/4T side drilled holes as main run piping material of the steam generator in nuclear power plants. It has been shown that the two results of defect shapes have better than before in this processing and phase contrast grow about twice. And we have constructed the acoustic microscope by using a quadrature detector that enables to acquire the amplitude and phase of the reflected signal simultaneously. Further more we have studied the reconstruction method of the amplitude and phase images, the enhancement method of the defect images' contrast.

  • PDF

ECG Compression Structure Design Using of Multiple Wavelet Basis Functions (다중웨이브렛 기저함수를 이용한 심전도 압축구조설계)

  • Kim Tae-hyung;Kwon Chang-Young;Yoon Dong-Han
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.9 no.3
    • /
    • pp.467-472
    • /
    • 2005
  • ECG signals are recorded for diagnostic purposes in many clinical situations. Also, In order to permit good clinical interpretation, data is needed at high resolutions and sampling rates. Therefore In this paper, we designed to compression structure using multiple wavelet basis function(SWBF) and compared to single wavelet basis function(SWBF) and discrete cosine transform(DCT). For experience objectivity, Simulation was performed using the arrhythmia data with sampling frequency 360Hz, resolution lIbit at MIT-BIH database. An estimate of performance estimate evaluate the reconstruction error. Consequently compression structure using MWBF has high performance result.

The vacancy diffusion and the formation of dislocation in graphene : Tight-binding molecular dynamics simulation

  • Lee, Gun-Do;Yoon, Eui-Joon;Hwang, Nong-Moon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.54-55
    • /
    • 2010
  • Vacancy defects in graphene can be created by electron or ion irradiation and those induce ripples which can change the electronic properties of graphene. Recently, the formation of defect structures such as vacancy defects and non-hexagonal rings has been reported in the high resolution transmission electron microscope (HR-TEM) of reduced graphene oxide [1]. In those HR-TEM images, it is noticed that the dislocations with pentagon-heptagon (5-7) pairs are formed and diffuses. Interestingly, it is also observed that two 5-7 pairs are separated and diffuse far away from each other. The separation of 5-7 pairs has been known to be due to their self-diffusion. However, from our tight-binding molecular dynamics simulation, it is found that the separation of 5-7 pairs is due to the diffusion of single vacancy defects and coalescence with 5-7 pairs. The diffusion and coalescence of single vacancy defects is too fast to be observed even in HR-TEM. We also implemented Van der Waals interaction in our tight-binding carbon model to describe correctly bi-layer and multi-layer graphene. The compressibility of graphite along c-axis in our tight-binding calculation is found to be in excellent agreement with experiment. We also discuss the difference between single layer and bi-layer graphene about vacancy diffusion and reconstruction.

  • PDF

Design and Performance Analysis of Adaptive Pseudomedian Filter for Digital Image Enlargement (디지털 영상 확대를 위한 적응형 Pseudomedian 필터의 설계 및 성능 분석)

  • Gwak, No-Yun;Hwang, Byeong-Won
    • The Transactions of the Korea Information Processing Society
    • /
    • v.7 no.4
    • /
    • pp.1305-1315
    • /
    • 2000
  • It is known that a digital image enlargement technique can increase the size of he image but the practical enhancement of resolution is trifle because the frequency bandwidth of the original image is basically limited. To solve this problem, this paper proposes the digital image enlargement technique which interpolates the interpolation points of horizontal and vertical direction by weighting according to the direction of edge information with the component of FOI(First Order Interpolation)and output of the pseudomedian filter for image enlargement and interpolates the interpolation points of diagonal direction by selectively transposing the direction of the subwindows of the pseudomedian filter according to the distribution of neighbored pixels thereto in the extended image. According to the proposed methods, the digital image enlargement which preserves the characteristic of the pseudomedian filter capable of keeping the reconstruction of edge information and reflects the advantage of FOI can be performed. Therefore, visual artifacts could be effectively suppressed, and most characteristics and shape of the original image can be reconstructed as well.

  • PDF

3D RECONSTRUCTION OF LANDSCAPE FEATURES USING LiDAR DATAAND DIGITAL AERIAL PHOTOGRAPH FOR 3D BASED VISIBILITY ANALYSIS

  • Song, Chul-Chul;Lee, Woo-Kyun;Jeong, Hoe-Seong;Lee, Kwan-Kyu
    • Proceedings of the KSRS Conference
    • /
    • 2007.10a
    • /
    • pp.548-551
    • /
    • 2007
  • Among components of digital topographic maps used officially in Korea, only contours have 3D values except buildings and trees that are demanded in landscape planning. This study presented a series of processes for 3Dreconstructing landscape features such as terrain, buildings and standing trees using LiDAR (Light Detection And Ranging) data and aerial digital photo graphs. The 3D reconstructing processes contain 1) building terrain model, 2) delineating outline of landscape features, 3) extracting height values, and 4) shaping and coloring landscape features using aerial photograph and 3-D virtual data base. LiDAR data and aerial photograph was taken in November 2006 for $50km^{2}$ area in Sorak National Park located in eastern part of Korea. The average scanning density of LiDAR pulse was 1.32 points per square meter, and the aerial photograph with RGB bands has $0.35m{\times}0.35m$ spatial resolution. Using reconstructed 3D landscape features, visibility with the growing trees with time and at different viewpoints was analyzed. Visible area from viewpoint could be effectively estimated considering 3D information of landscape features. This process could be applied for landscape planning like building scale with the consideration of surrounding landscape features.

  • PDF

Droplet Geometry and Its Volume Analysis (기름방울 형상 및 그 체적 분석법)

  • Yoon, Moon-Chul
    • Tribology and Lubricants
    • /
    • v.24 no.6
    • /
    • pp.320-325
    • /
    • 2008
  • The recent industrial application requires technical methods to get the cutting fluid droplet surfaces in particular from the viewpoint of topography and micro texture. To characterize the surface topography of droplet, the combination of the confocal laser scanning microscope (CLSM) and wavelet filtering is well suited for obtaining the droplet geometry encountered in tribological research. This technique indicates a better agreement in obtaining an appropriate droplet surface obtained by the CLSM over a detail range of surface accuracy (resolution: $2{\mu}m$). And the results allow an excellent accuracy in a measurement of a droplet surface. The combination of extended focal depth measurement configured and multi-scale wavelet filtering has proven that it can construct a droplet surface in a successive and accurate way. A multi-scale approach of wavelet filtering was developed based on the decomposition and reconstruction of droplet surface by 2D wavelet transform using db9 (a mother wavelet of daubechies). Also this technique can be extended to characterize the quantification of droplet properties and other field in a wide range of scales. Finally this method is verified to be a better droplet surface modeling in a micro scale arising in a mist machining.

Color image restoration for a single-CCD color camcorder system (단일 CCD 컬러 캠코더 시스템을 위한 컬러 영상복원)

  • Na, Woon;Park, Yong-Cheol;Paik, Joon-Ki
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.21 no.6
    • /
    • pp.1398-1415
    • /
    • 1996
  • Instead of using three charge-coupled devices (CCDs) for the corresponding color channels, most consumer's most consummer's color macmorders reconstruct color images by using only one CCD with a color filter array (CFA), which periodically samples different color signals. By this reson the resulting image cannot produce the full resolution of the input image. More sepecifically, a single-CCD color camcorder reconstructs red, greed, and blue color channels from a color filter array followed by a CCD. During the reconstruction process, color cross-talk among channels (interchannel distortion) and eriodically space-verying blur (intrachannel distortion) occur. The proposed restoration system reduces distortions due to interchannel interference, and then restores each color channel by removing the corresponding intrachannel distortion. Experimental results show that the proposedsystem provides the improved image in oth objective and subjective senses. A major advantage of the proposed system is feasible to real-time image improvement because it can be implemented by a finite impulse response (FIR) filter structure.

  • PDF

A STUDY ON INDUSTRIAL GAMMA RAY CT WITH A SINGLE SOURCE-DETECTOR PAIR

  • Kim Jong-Bum;Jung Sung-Hee;Kim Jin-Sup
    • Nuclear Engineering and Technology
    • /
    • v.38 no.4
    • /
    • pp.383-390
    • /
    • 2006
  • Having its roots in medical applications, industrial gamma ray CT has opened up new roads far investigating and modeling industrial processes. Using a line of research related to industrial gamma ray CT, the authors set up a system of single source and detector gamma transmission tomography for wood timber and a packed bed phantom. The hardware of the CT system consists of two servo motors, a data logger, a computer, a radiation source and a radiation detector. One motor simultaneously moves the source and the detector for a parallel beam scanning, whereas the other motor rotates the scan table at a preset projection angle. The image is reconstructed from the measured projections by the filtered back projection method. The phantom was designed to simulate a cross section of a packed bed with a void. The radiation source was 20mCi of Cs-137 and the detector was a 1 inch $\times$ 1 inch NaI (TI) scintillator shielded by a lead collimator. The experimental gamma ray CT image has sufficient resolution to reveal air holes and the density distribution inside the phantom. The system could possibly be applied to a packed bed column or a pipe flow in a petrochemical plant.

3D Light-Sheet Fluorescence Microscopy of Cranial Neurons and Vasculature during Zebrafish Embryogenesis

  • Park, Ok Kyu;Kwak, Jina;Jung, Yoo Jung;Kim, Young Ho;Hong, Hyun-Seok;Hwang, Byung Joon;Kwon, Seung-Hae;Kee, Yun
    • Molecules and Cells
    • /
    • v.38 no.11
    • /
    • pp.975-981
    • /
    • 2015
  • Precise 3D spatial mapping of cells and their connections within living tissues is required to fully understand developmental processes and neural activities. Zebrafish embryos are relatively small and optically transparent, making them the vertebrate model of choice for live in vivo imaging. However, embryonic brains cannot be imaged in their entirety by confocal or two-photon microscopy due to limitations in optical range and scanning speed. Here, we use light-sheet fluorescence microscopy to overcome these limitations and image the entire head of live transgenic zebrafish embryos. We simultaneously imaged cranial neurons and blood vessels during embryogenesis, generating comprehensive 3D maps that provide insight into the coordinated morphogenesis of the nervous system and vasculature during early development. In addition, blood cells circulating through the entire head, vagal and cardiac vasculature were also visualized at high resolution in a 3D movie. These data provide the foundation for the construction of a complete 4D atlas of zebrafish embryogenesis and neural activity.

Three Dimensional Building Construction Based on LIDAR Data (LIDAR 자료기반의 3차원 건물정보 구축)

  • Yoo, Hwan-Hee;Kim, Kyung-Whan;Kim, Seong-Sam
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.14 no.3 s.37
    • /
    • pp.13-22
    • /
    • 2006
  • Realistic 3D building construction in urban area has become an important issue because of increasing demand of 3D geo-spatial information in many application. Contrary to the conventional 3D building model construction approach using aerial images and high-resolution satellite imagery, it has been researched widely in building reconstruction using high-accuracy aerial LIDAR data in the latest. This paper presents a method for 3D building construction through building outlines extraction by LoG operator's Zero-crossing and line generation and refinement by Douglas-Peucker algorithm.

  • PDF