DOI QR코드

DOI QR Code

3D Light-Sheet Fluorescence Microscopy of Cranial Neurons and Vasculature during Zebrafish Embryogenesis

  • Park, Ok Kyu (Korea Basic Science Institute Chuncheon Center) ;
  • Kwak, Jina (Department of Systems Immunology, College of Biomedical Science, Kangwon National University) ;
  • Jung, Yoo Jung (Department of Systems Immunology, College of Biomedical Science, Kangwon National University) ;
  • Kim, Young Ho (Medifron_DBT, Inc.) ;
  • Hong, Hyun-Seok (Medifron_DBT, Inc.) ;
  • Hwang, Byung Joon (Department of Molecular Bioscience, College of Biomedical Science, Kangwon National University) ;
  • Kwon, Seung-Hae (Korea Basic Science Institute Chuncheon Center) ;
  • Kee, Yun (Department of Systems Immunology, College of Biomedical Science, Kangwon National University)
  • Received : 2015.06.03
  • Accepted : 2015.07.30
  • Published : 2015.11.30

Abstract

Precise 3D spatial mapping of cells and their connections within living tissues is required to fully understand developmental processes and neural activities. Zebrafish embryos are relatively small and optically transparent, making them the vertebrate model of choice for live in vivo imaging. However, embryonic brains cannot be imaged in their entirety by confocal or two-photon microscopy due to limitations in optical range and scanning speed. Here, we use light-sheet fluorescence microscopy to overcome these limitations and image the entire head of live transgenic zebrafish embryos. We simultaneously imaged cranial neurons and blood vessels during embryogenesis, generating comprehensive 3D maps that provide insight into the coordinated morphogenesis of the nervous system and vasculature during early development. In addition, blood cells circulating through the entire head, vagal and cardiac vasculature were also visualized at high resolution in a 3D movie. These data provide the foundation for the construction of a complete 4D atlas of zebrafish embryogenesis and neural activity.

Keywords

References

  1. Ahrens, M.B., Orger, M.B., Robson, D.N., Li, J.M., and Keller, P.J. (2013). Whole-brain functional imaging at cellular resolution using light-sheet microscopy. Nat. Methods 10, 413-420. https://doi.org/10.1038/nmeth.2434
  2. Chardes, C., Melenec, P., Bertrand, V., and Lenne, P.F. (2014). Setting up a simple light sheet microscope for in toto imaging of C. elegans development. J. Vis. Exp. 5; doi: 10.3791/51342.
  3. Holekamp, T.F., Turaga, D., and Holy, T.E. (2008). Fast threedimensional fluorescence imaging of activity in neural populations by objective-coupled planar illumination microscopy. Neuron 57, 661-672. https://doi.org/10.1016/j.neuron.2008.01.011
  4. Huisken, J., and Stainier, D.Y. (2007). Even fluorescence excitation by multidirectional selective plane illumination microscopy (mSPIM). Opt. Lett. 32, 2608-2610. https://doi.org/10.1364/OL.32.002608
  5. Isogai, S., Horiguchi, M., and Weinstein, B.M. (2001). The vascular anatomy of the developing zebrafish: an atlas of embryonic and early larval development. Dev. Biol. 230, 278-301. https://doi.org/10.1006/dbio.2000.9995
  6. Keller, P.J. (2013). In vivo imaging of zebrafish embryogenesis. Methods 62, 268-278. https://doi.org/10.1016/j.ymeth.2013.03.015
  7. Keller, P.J., Schmidt, A.D., Wittbrodt, J., and Stelzer, E.H. (2008). Reconstruction of zebrafish early embryonic development by scanned light sheet microscopy. Science 322, 1065-1069. https://doi.org/10.1126/science.1162493
  8. Keller, P.J., Schmidt, A.D., Wittbrodt, J., and Stelzer, E.H. (2011). Digital scanned laser light-sheet fluorescence microscopy (DSLM) of zebrafish and Drosophila embryonic development. Cold Spring Harb. Protoc. 2011, 1235-1243.
  9. Kimmel, C.B., Ballard, W.W., Kimmel, S.R., Ullmann, B., and Schilling, T.F. (1995). Stages of embryonic development of the zebrafish. Dev. Dyn. 203, 253-310. https://doi.org/10.1002/aja.1002030302
  10. Kwak, J., Park, O.K., Jung, Y.J., Hwang, B.J., Kwon, S.H., and Kee, Y. (2013). Live image profiling of neural crest lineages in zebrafish transgenic lines. Mol. Cells 35, 255-260. https://doi.org/10.1007/s10059-013-0001-5
  11. Lawson, N.D., Vogel, A.M., and Weinstein, B.M. (2002). sonic hedgehog and vascular endothelial growth factor act upstream of the Notch pathway during arterial endothelial differentiation. Dev. Cell 3, 127-136. https://doi.org/10.1016/S1534-5807(02)00198-3
  12. Mertz, J., and Kim, J. (2010). Scanning light-sheet microscopy in the whole mouse brain with HiLo background rejection. J. Biomed. Opt. 15, 016027. https://doi.org/10.1117/1.3324890
  13. Panier, T., Romano, S.A., Olive, R., Pietri, T., Sumbre, G., Candelier, R., and Debregeas, G. (2013). Fast functional imaging of multiple brain regions in intact zebrafish larvae using selective plane illumination microscopy. Front. Neural Circuits 7, 65.
  14. Paquet, D., Bhat, R., Sydow, A., Mandelkow, E.M., Berg, S., Hellberg, S., Falting, J., Distel, M., Koster, R.W., Schmid, B., et al. (2009). A zebrafish model of tauopathy allows in vivo imaging of neuronal cell death and drug evaluation. J. Clin. Invest. 119, 1382-1395. https://doi.org/10.1172/JCI37537
  15. Park, H.C., Kim, C.H., Bae, Y.K., Yeo, S.Y., Kim, S.H., Hong, S.K., Shin, J., Yoo, K.W., Hibi, M., Hirano, T., et al. (2000). Analysis of upstream elements in the HuC promoter leads to the establishment of transgenic zebrafish with fluorescent neurons. Dev. Biol. 227, 279-293. https://doi.org/10.1006/dbio.2000.9898
  16. Santi, P.A., Johnson, S.B., Hillenbrand, M., GrandPre, P.Z., Glass, T.J., and Leger, J.R. (2009). Thin-sheet laser imaging microscopy for optical sectioning of thick tissues. BioTechniques 46, 287-294. https://doi.org/10.2144/000113087
  17. Tomer, R., Khairy, K., Amat, F., and Keller, P.J. (2012). Quantitative high-speed imaging of entire developing embryos with simultaneous multiview light-sheet microscopy. Nat. Methods 9, 755-763. https://doi.org/10.1038/nmeth.2062
  18. Traver, D., Paw, B.H., Poss, K.D., Penberthy, W.T., Lin, S., and Zon, L.I. (2003). Transplantation and in vivo imaging of multilineage engraftment in zebrafish bloodless mutants. Nat. Immunol. 4, 1238-1246. https://doi.org/10.1038/ni1007
  19. Truong, T.V., Supatto, W., Koos, D.S., Choi, J.M., and Fraser, S.E. (2011). Deep and fast live imaging with two-photon scanned light-sheet microscopy. Nat. Methods 8, 757-760. https://doi.org/10.1038/nmeth.1652
  20. Weber, M., and Huisken, J. (2011). Light sheet microscopy for realtime developmental biology. Curr. Opin. Genet. Dev. 21, 566-572. https://doi.org/10.1016/j.gde.2011.09.009

Cited by

  1. 3D Visualization of Developmental Toxicity of 2,4,6-Trinitrotoluene in Zebrafish Embryogenesis Using Light-Sheet Microscopy vol.17, pp.11, 2016, https://doi.org/10.3390/ijms17111925
  2. Imaging Myelination In Vivo Using Transparent Animal Models vol.2, pp.1, 2016, https://doi.org/10.3233/BPL-160029
  3. Embryonic hematopoiesis under microscopic observation vol.428, pp.2, 2017, https://doi.org/10.1016/j.ydbio.2017.03.008
  4. Recent Progress in Light Sheet Microscopy for Biological Applications vol.72, pp.8, 2018, https://doi.org/10.1177/0003702818778851
  5. The light-sheet microscopy revolution vol.20, pp.5, 2018, https://doi.org/10.1088/2040-8986/aab58a
  6. Zebrafish as a Model for the Study of Live in vivo Processive Transport in Neurons vol.7, pp.2296-634X, 2019, https://doi.org/10.3389/fcell.2019.00017
  7. 3D Imaging and Quantitative Analysis of Vascular Networks: A Comparison of Ultramicroscopy and Micro-Computed Tomography vol.8, pp.8, 2018, https://doi.org/10.7150/thno.22610
  8. Multiscale imaging of plant development by light-sheet fluorescence microscopy vol.4, pp.9, 2015, https://doi.org/10.1038/s41477-018-0238-2
  9. 3D light-sheet assay assessing novel valproate-associated cardiotoxicity and folic acid relief in zebrafish embryogenesis vol.227, pp.None, 2015, https://doi.org/10.1016/j.chemosphere.2019.04.061
  10. Light Sheet Illumination for 3D Single-Molecule Super-Resolution Imaging of Neuronal Synapses vol.13, pp.None, 2021, https://doi.org/10.3389/fnsyn.2021.761530
  11. Histopathological assessment of laterality defects in zebrafish development vol.25, pp.3, 2015, https://doi.org/10.1080/19768354.2021.1931443
  12. A perspective on light sheet microscopy and imaging: Applications across the breadth of applied physics and biophysics vol.119, pp.16, 2021, https://doi.org/10.1063/5.0068031