DOI QR코드

DOI QR Code

Differential Effect of MyD88 Signal in Donor T Cells on Graft-versus-Leukemia Effect and Graft-versus-Host Disease after Experimental Allogeneic Stem Cell Transplantation

  • Lim, Ji-Young (Department of Internal Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea) ;
  • Ryu, Da-Bin (Department of Internal Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea) ;
  • Lee, Sung-Eun (Department of Internal Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea) ;
  • Park, Gyeongsin (Department of Pathology, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea) ;
  • Choi, Eun Young (Department of Biomedical Sciences, Seoul National University College of Medicine) ;
  • Min, Chang-Ki (Department of Internal Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea)
  • Received : 2015.06.02
  • Accepted : 2015.07.30
  • Published : 2015.11.30

Abstract

Despite the presence of toll like receptor (TLR) expression in conventional $TCR{\alpha}{\beta}$ T cells, the direct role of TLR signaling via myeloid differentiation factor 88 (MyD88) within T lymphocytes on graft-versus-host disease (GVHD) and graft-versus-leukemia (GVL) effect after allogeneic stem cell transplantation (allo-SCT) remains unknown. In the allo-SCT model of C57BL/6 ($H-2^b$) ${\rightarrow}$ B6D2F1 ($H-2^{b/d}$), recipients received transplants of wild type (WT) T-cell-depleted (TCD) bone marrow (BM) and splenic T cells from either WT or MyD88 deficient (MyD88KO) donors. Host-type ($H-2^d$) P815 mastocytoma or L1210 leukemia cells were injected either subcutaneously or intravenously to generate a GVHD/GVL model. Allogeneic recipients of MyD88KO T cells demonstrated a greater tumor growth without attenuation of GVHD severity. Moreover, GVHD-induced GVL effect, caused by increasing the conditioning intensity was also not observed in the recipients of MyD88KO T cells. In vitro, the absence of MyD88 in T cells resulted in defective cytolytic activity to tumor targets with reduced ability to produce IFN-${\gamma}$ or granzyme B, which are known to critical for the GVL effect. However, donor T cell expansion with effector and memory T-cell differentiation were more enhanced in GVHD hosts of MyD88KO T cells. Recipients of MyD88KO T cells experienced greater expansion of Foxp3- and IL4-expressing T cells with reduced INF-${\gamma}$ producing T cells in the spleen and tumor-draining lymph nodes early after transplantation. Taken together, these results highlight a differential role for MyD88 deficiency on donor T-cells, with decreased GVL effect without attenuation of the GVHD severity after experimental allo-SCT.

Keywords

References

  1. Appelbaum, F.R. (2001). Haematopoietic cell transplantation as immunotherapy. Nature 411, 385-389. https://doi.org/10.1038/35077251
  2. Asprodites, N., Zheng, L., Geng, D., Velasco-Gonzalez, C., Sanchez-Perez, L., and Davila, E. (2008). Engagement of Toll-like receptor-2 on cytotoxic T-lymphocytes occurs in vivo and augments antitumor activity. FASEB J. 22, 3628-3637. https://doi.org/10.1096/fj.08-108274
  3. Barrett, A.J. (1997). Mechanisms of the graft-versus-leukemia reaction. Stem Cells 15, 248-258. https://doi.org/10.1002/stem.150248
  4. Bendigs, S., Salzer, U., Lipford, G.B., Wagner, H., and Heeg, K. (1999). CpG-oligodeoxynucleotides co-stimulate primary T cells in the absence of antigen-presenting cells. Eur. J. Immunol. 29, 1209-1218. https://doi.org/10.1002/(SICI)1521-4141(199904)29:04<1209::AID-IMMU1209>3.0.CO;2-J
  5. Caron, G., Duluc, D., Fremaux, I., Jeannin, P., David, C., Gascan, H., and Delneste, Y. (2005). Direct stimulation of human T cells via TLR5 and TLR7/8: flagellin and R-848 up-regulate proliferation and IFN-gamma production by memory CD4+ T cells. J. Immunol. 175, 1551-1557. https://doi.org/10.4049/jimmunol.175.3.1551
  6. Chang, J., Burkett, P.R., Borges, C.M., Kuchroo, V.K., Turka, L.A., and Chang, C.H. (2013). MyD88 is essential to sustain mTOR activation necessary to promote T helper 17 cell proliferation by linking IL-1 and IL-23 signaling. Proc. Natl. Acad. Sci. USA 110, 2270-2275. https://doi.org/10.1073/pnas.1206048110
  7. Cooke, K. R., Hill, G. R., Crawford, J. M., Bungard, D., Brinson, Y. S., Delmonte, J., Jr., and Ferrara, J.L. (1998). Tumor necrosis factor-alpha production to lipopolysaccharide stimulation by donor cells predicts the severity of experimental acute graft-versus-host disease. J. Clin. Invest. 102, 1882-1891. https://doi.org/10.1172/JCI4285
  8. Cottalorda, A., Verschelde, C., Marcais, A., Tomkowiak, M., Musette, P., Uematsu, S., Akira, S., Marvel, J., and Bonnefoy-Berard, N. (2006). TLR2 engagement on CD8 T cells lowers the threshold for optimal antigen-induced T cell activation. Eur. J. Immunol. 36, 1684-1693. https://doi.org/10.1002/eji.200636181
  9. Dudley, M.E., Wunderlich, J.R., Yang, J.C., Sherry, R.M., Topalian, S.L., Restifo, N.P., Royal, R.E., Kammula, U., White, D.E., Mavroukakis, S.A., et al. (2005). Adoptive cell transfer therapy following non-myeloablative but lymphodepleting chemotherapy for the treatment of patients with refractory metastatic melanoma. J. Clin. Oncol. 23, 2346-2357. https://doi.org/10.1200/JCO.2005.00.240
  10. Fukata, M., Breglio, K., Chen, A., Vamadevan, A.S., Goo, T., Hsu, D., Conduah, D., Xu, R., and Abreu, M.T. (2008). The myeloid differentiation factor 88 (MyD88) is required for CD4+ T cell effector function in a murine model of inflammatory bowel disease. J. Immunol. 180, 1886-1894. https://doi.org/10.4049/jimmunol.180.3.1886
  11. Gelman, A.E., Zhang, J., Choi, Y., and Turka, L.A. (2004). Toll-like receptor ligands directly promote activated CD4+ T cell survival. J. Immunol. 172, 6065-6073. https://doi.org/10.4049/jimmunol.172.10.6065
  12. Hartman, Z.C., Osada, T., Glass, O., Yang, X.Y., Lei, G.J., Lyerly, H.K., and Clay, T.M. (2010). Ligand-independent toll-like receptor signals generated by ectopic overexpression of MyD88 generate local and systemic antitumor immunity. Cancer Res. 70, 7209-7220. https://doi.org/10.1158/0008-5472.CAN-10-0905
  13. Hill, G.R., and Ferrara, J.L. (2000). The primacy of the gastrointestinal tract as a target organ of acute graft-versus-host disease: rationale for the use of cytokine shields in allogeneic bone marrow transplantation. Blood 95, 2754-2759.
  14. Horowitz, M.M., Gale, R.P., Sondel, P.M., Goldman, J.M., Kersey, J., Kolb, H.J., Rimm, A.A., Ringden, O., Rozman, C., Speck, B., et al. (1990). Graft-versus-leukemia reactions after bone marrow transplantation. Blood 75, 555-562.
  15. Kawai, T., Adachi, O., Ogawa, T., Takeda, K., and Akira, S. (1999). Unresponsiveness of MyD88-deficient mice to endotoxin. Immunity 11, 115-122. https://doi.org/10.1016/S1074-7613(00)80086-2
  16. Komai-Koma, M., Jones, L., Ogg, G.S., Xu, D., Liew, F.Y. (2004). TLR2 is expressed on activated T cells as a costimulatory receptor. Proc. Natl. Acad. Sci. USA 101, 3029-3034. https://doi.org/10.1073/pnas.0400171101
  17. Lim, J.Y., Choi, M.S., Youn, H., Choi, E.Y., and Min, C.K. (2011). The influence of pretransplantation conditioning on graft-vs.-leukemia effect in mice. Exp. Hematol. 39, 1018-1029. https://doi.org/10.1016/j.exphem.2011.07.003
  18. Lim, J.Y., Cho, B.S., Min, C.K., Park, G., Kim, Y.J., Chung, N.G., Jeong, D.C., and Min, W.S. (2014). Fluctuations in pathogenic CD4+ T-cell subsets in a murine sclerodermatous model of chronic graft-versus-host disease. Immunol. Invest. 43, 41-53. https://doi.org/10.3109/08820139.2013.843191
  19. Min, C.K., Maeda, Y., Lowler, K., Liu, C., Clouthier, S., Lofthus, D., Weisiger, E., Ferrara, J.L., and Reddy, P. (2004). Paradoxical effects of interleukin-18 on the severity of acute graft-versus-host disease mediated by CD4+ and CD8+ T-cell subsets after experimental allogeneic bone marrow transplantation. Blood 104, 3393-3399. https://doi.org/10.1182/blood-2004-02-0763
  20. Schmaltz, C., Alpdogan, O., Horndasch, K.J., Muriglan, S.J., Kappel, B.J., Teshima, T., Ferrara, J.L., Burakoff, S.J., and van den Brink, M.R. (2001). Differential use of Fas ligand and perforin cytotoxic pathways by donor T cells in graft-versus-host disease and graft-versus-leukemia effect. Blood 97, 2886-2895. https://doi.org/10.1182/blood.V97.9.2886
  21. Schmaltz, C., Alpdogan, O., Muriglan, S.J., Kappel, B.J., Rotolo, J.A., Ricchetti, E.T., Greenberg, A.S., Willis, L.M., Murphy, G.F., Crawford, J.M., et al. (2003). Donor T cell-derived TNF is required for graft-versus-host disease and graft-versus-tumor activity after bone marrow transplantation. Blood 101, 2440-2445. https://doi.org/10.1182/blood-2002-07-2109
  22. Schnare, M., Barton, G.M., Holt, A.C., Takeda, K., Akira, S., and Medzhitov, R. (2001). Toll-like receptors control activation of adaptive immune responses. Nat. Immunol. 2, 947-950. https://doi.org/10.1038/ni712
  23. Shin, H.J., Baker, J., Leveson-Gower, D.B., Smith, A.T., Sega, E.I., and Negrin, R.S. (2011). Rapamycin and IL-2 reduce lethal acute graft-versus-host disease associated with increased expansion of donor type CD4+CD25+Foxp3+ regulatory T cells. Blood 118, 2342-2350. https://doi.org/10.1182/blood-2010-10-313684
  24. Taylor, P.A., Lees, C.J., and Blazar, B.R. (2002). The infusion of ex vivo activated and expanded CD4(+)CD25(+) immune regulatory cells inhibits graft-versus-host disease lethality. Blood 99, 3493-3499. https://doi.org/10.1182/blood.V99.10.3493
  25. Teshima, T., Hill, G.R., Pan, L., Brinson, Y.S., van den Brink, M.R., Cooke, K.R., and Ferrara, J.L. (1999). IL-11 separates graft-versus- leukemia effects from graft-versus-host disease after bone marrow transplantation. J. Clin. Invest. 104, 317-325. https://doi.org/10.1172/JCI7111
  26. Tomita, T., Kanai, T., Fujii, T., Nemoto, Y., Okamoto, R., Tsuchiya, K., Totsuka, T., Sakamoto, N., Akira, S., and Watanabe, M. (2008). MyD88-dependent pathway in T cells directly modulates the expansion of colitogenic CD4+ T cells in chronic colitis. J. Immunol. 180, 5291-5299. https://doi.org/10.4049/jimmunol.180.8.5291
  27. van den Brink, M.R., and Burakoff, S.J. (2002). Cytolytic pathways in haematopoietic stem-cell transplantation. Nat. Rev. Immunol. 2, 273-281. https://doi.org/10.1038/nri775
  28. Wu, H., Chen, G., Wyburn, K.R., Yin, J., Bertolino, P., Eris, J.M., Alexander, S.I., Sharland, A.F., and Chadban, S.J. (2007). TLR4 activation mediates kidney ischemia/reperfusion injury. J. Clin. Invest. 117, 2847-2859. https://doi.org/10.1172/JCI31008
  29. Wysocki, C. A., Panoskaltsis-Mortari, A., Blazar, B. R., and Serody, J. S. (2005). Leukocyte migration and graft-versus-host disease. Blood 105, 4191-4199. https://doi.org/10.1182/blood-2004-12-4726
  30. Yang, Y.G., Sergio, J.J., Pearson, D.A., Szot, G.L., Shimizu, A., and Sykes, M. (1997). Interleukin-12 preserves the graft-versus-leukemia effect of allogeneic CD8 T cells while inhibiting CD4-dependent graft-versus-host disease in mice. Blood 90, 4651-4660.
  31. Yang, Y.G., Qi, J., Wang, M.G., and Sykes, M. (2002). Donorderived interferon gamma separates graft-versus-leukemia effects and graft-versus-host disease induced by donor CD8 T cells. Blood 99, 4207-4215. https://doi.org/10.1182/blood.V99.11.4207
  32. Zheng, L., Asprodites, N., Keene, A.H., Rodriguez, P., Brown, K.D., and Davila, E. (2008). TLR9 engagement on CD4 T lymphocytes represses gamma-radiation-induced apoptosis through activation of checkpoint kinase response elements. Blood 111, 2704-2713. https://doi.org/10.1182/blood-2007-07-104141

Cited by

  1. Danger Signals and Graft-versus-host Disease: Current Understanding and Future Perspectives vol.7, 2016, https://doi.org/10.3389/fimmu.2016.00539
  2. Role of Toll-Like Receptor Signaling in the Pathogenesis of Graft-versus-Host Diseases vol.17, pp.8, 2016, https://doi.org/10.3390/ijms17081288
  3. Sensing danger: toll-like receptors and outcome in allogeneic hematopoietic stem cell transplantation vol.52, pp.4, 2017, https://doi.org/10.1038/bmt.2016.263
  4. Strategies for Enhancing and Preserving Anti-leukemia Effects Without Aggravating Graft-Versus-Host Disease vol.9, pp.None, 2018, https://doi.org/10.3389/fimmu.2018.03041
  5. Myeloid differentiation factor 88 signaling in donor T cells accelerates graft-versus-host disease vol.105, pp.1, 2015, https://doi.org/10.3324/haematol.2018.203380
  6. MyD88 Costimulation in Donor CD8+ T Cells Enhances the Graft-versus-Tumor Effect in Murine Hematopoietic Cell Transplantation vol.206, pp.4, 2021, https://doi.org/10.4049/jimmunol.2000479