• Title/Summary/Keyword: Reconstruction filter

Search Result 232, Processing Time 0.032 seconds

The Design of Optimal Filters in Vector-Quantized Subband Codecs (벡터양자화된 부대역 코덱에서 최적필터의 구현)

  • 지인호
    • The Journal of the Acoustical Society of Korea
    • /
    • v.19 no.1
    • /
    • pp.97-102
    • /
    • 2000
  • Subband coding is to divide the signal frequency band into a set of uncorrelated frequency bands by filtering and then to encode each of these subbands using a bit allocation rationale matched to the signal energy in that subband. The actual coding of the subband signal can be done using waveform encoding techniques such as PCM, DPCM and vector quantizer(VQ) in order to obtain higher data compression. Most researchers have focused on the error in the quantizer, but not on the overall reconstruction error and its dependence on the filter bank. This paper provides a thorough analysis of subband codecs and further development of optimum filter bank design using vector quantizer. We compute the mean squared reconstruction error(MSE) which depends on N the number of entries in each code book, k the length of each code word, and on the filter bank coefficients. We form this MSE measure in terms of the equivalent quantization model and find the optimum FIR filter coefficients for each channel in the M-band structure for a given bit rate, given filter length, and given input signal correlation model. Specific design examples are worked out for 4-tap filter in 2-band paraunitary filter bank structure. These optimum paraunitary filter coefficients are obtained by using Monte Carlo simulation. We expect that the results of this work could be contributed to study on the optimum design of subband codecs using vector quantizer.

  • PDF

Nonlinearity-Compensation Extended Kalman Filter for Handling Unexpected Measurement Uncertainty in Process Tomography

  • Kim, Jeong-Hoon;Ijaz, Umer Zeeshan;Kim, Bong-Seok;Kim, Min-Chan;Kim, Sin;Kim, Kyung-Youn
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1897-1902
    • /
    • 2005
  • The objective of this paper is to estimate the concentration distribution in flow field inside the pipeline based on electrical impedance tomography. Special emphasis is given to the development of dynamic imaging technique for two-phase field undergoing a rapid transient change. Nonlinearity-compensation extended Kalman filter is employed to cope with unexpected measurement uncertainty. The nonlinearity-compensation extended Kalman filter compensates for the influence of measurement uncertainty and solves the instability of extended Kalman filter. Extensive computer simulations are carried out to show that nonlinearity-compensation extended Kalman filter has enhanced estimation performance especially in the unexpected measurement environment.

  • PDF

Constrained High Accuracy Stereo Reconstruction Method for Surgical Instruments Positioning

  • Wang, Chenhao;Shen, Yi;Zhang, Wenbin;Liu, Yuncai
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.6 no.10
    • /
    • pp.2679-2691
    • /
    • 2012
  • In this paper, a high accuracy stereo reconstruction method for surgery instruments positioning is proposed. Usually, the problem of surgical instruments reconstruction is considered as a basic task in computer vision to estimate the 3-D position of each marker on a surgery instrument from three pairs of image points. However, the existing methods considered the 3-D reconstruction of the points separately thus ignore the structure information. Meanwhile, the errors from light variation, imaging noise and quantization still affect the reconstruction accuracy. This paper proposes a method which takes the structure information of surgical instruments as constraints, and reconstructs the whole markers on one surgical instrument together. Firstly, we calibrate the instruments before navigation to get the structure parameters. The structure parameters consist of markers' number, distances between each markers and a linearity sign of each instrument. Then, the structure constraints are added to stereo reconstruction. Finally, weighted filter is used to reduce the jitter. Experiments conducted on surgery navigation system showed that our method not only improve accuracy effectively but also reduce the jitter of surgical instrument greatly.

Occluded Object Motion Tracking Method based on Combination of 3D Reconstruction and Optical Flow Estimation (3차원 재구성과 추정된 옵티컬 플로우 기반 가려진 객체 움직임 추적방법)

  • Park, Jun-Heong;Park, Seung-Min;Sim, Kwee-Bo
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.21 no.5
    • /
    • pp.537-542
    • /
    • 2011
  • A mirror neuron is a neuron fires both when an animal acts and when the animal observes the same action performed by another. We propose a method of 3D reconstruction for occluded object motion tracking like Mirror Neuron System to fire in hidden condition. For modeling system that intention recognition through fire effect like Mirror Neuron System, we calculate depth information using stereo image from a stereo camera and reconstruct three dimension data. Movement direction of object is estimated by optical flow with three-dimensional image data created by three dimension reconstruction. For three dimension reconstruction that enables tracing occluded part, first, picture data was get by stereo camera. Result of optical flow is made be robust to noise by the kalman filter estimation algorithm. Image data is saved as history from reconstructed three dimension image through motion tracking of object. When whole or some part of object is disappeared form stereo camera by other objects, it is restored to bring image date form history of saved past image and track motion of object.

An Efficient 2D Discrete Wavelet Transform Filter Design Using Lattice Structure (Lattice 구조를 갖는 효율적인 2차원 이산 웨이블렛 변환 필터 설계)

  • Park, Tae-Geun;Jeong, Seon-Gyeong
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.39 no.6
    • /
    • pp.59-68
    • /
    • 2002
  • In this paper, we design the two-dimensional Discrete Wavelet Transform (2D DWT) filter that is widely used in various applications such as image compression because it has no blocking effects and relatively high compression rate. The filter that we used here is two-channel four-taps QMF(Quadrature Mirror Filter) Lattice filter with PR (Perfect Reconstruction) property. The proposed DWT architecture, with two consecutive inputs shows an efficient performance with a minimum of such hardware resources as multipliers, adders, and registers due to a simple scheduling. The proposed architecture was verified by the RTL simulation, and utilizes the hardware 100%. Our architecture shows a relatively high performance with a minimum hardware when compared with other approaches. An efficient memory mapping and address generation techniques are introduced and the fixed-point arithmetic analysis for minimizing the PSNR degradation due to quantization is discussed.

An Efficient Design Method of Linear-Phase Prototype Lowpass Filter for Near-Perfect Reconstruction Pseudo-QMF Banks (근접 완전재생 Pseudo-QMF 뱅크를 위한 선형위상 프로토타입 저역통과 필터의 효율적인 설계 방법)

  • Jeon, Joon-Hyeon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.3C
    • /
    • pp.271-280
    • /
    • 2008
  • M channel near-perfect-reconstruction(NPR) pseudo-QMF banks are a hybrid of conventional pseudo-QMF design and spectral factorization approach where the analysis and synthesis filters are cosine-modulated versions of the prototype-lowpass filter(p-LPF). However, p-LPF H(z) does not have linear-phase symmetry as well as magnitude-distortion optimization since it is obtained by spectral factorization of $2M^{-th}$ band filter $G(z)=z^{-(N-1)}H(z^{-1})H(z)$. A fair amount of attention, therefore, has been focused on the design of filter banks for reducing only alias-cancellation distortion without reconstructed-amplitude distortion. In this paper, we propose a new method for designing linear-phase p-LPF in NPR pseudo-QMF banks, which is based on Maxflat(maximally flat) FIR filters with closed-form transfer function. In addition, p-LPF H(z) is optimized in this approach so that the 2M-channel overall distortion response represented with $G(z)=H^2(z)$ approximately becomes an unit magnitude response. Through several examples of NPR pseudo-QMF banks, it is shown that the peek ripple of the overall magnitude distortion is less than $3.5{\times}10^{-4}\;({\simeq}-70dB)$ and analysis/synthesis filters have the sharp monotone-stopband attenuation exceeding 100 dB.

Optimum Nonseparable Filter Bank Design in Multidimensional M-Band Subband Structure

  • Park, Kyu-Sik;Lee, Won-Cheol
    • The Journal of the Acoustical Society of Korea
    • /
    • v.15 no.2E
    • /
    • pp.24-32
    • /
    • 1996
  • A rigorous theory for modeling, analysis, optimum nonseparable filter bank in multidimensional M-band quantized subband codec are developed in this paper. Each pdf-optimized quantizer is modeled by a nonlinear gain-plus-additive uncorrelated noise and embedded into the subband structure. We then decompose the analysis/synthesis filter banks into their polyphase components and shift the down-and up-samplers to the right and left of the analysis/synthesis polyphase matrices respectively. Focusing on the slow clock rate signal between the samplers, we derive the exact expression for the output mean square quantization error by using spatial-invariant analysis. We show that this error can be represented by two uncorrelated components : a distortion component due to the quantizer gain, and a random noise component due to fictitious uncorrelated noise at the uantizer. This mean square error is then minimized subject to perfect reconstruction (PR) constraints and the total bit allocation for the entire filter bank. The algorithm gives filter coefficients and subband bit allocations. Numerical design example for the optimum nonseparable orthonormal filter bank is given with a quincunx subsampling lattice.

  • PDF

Polyphase Representation of the Relationships Among Fullband, Subband, and Block Adaptive Filters

  • Tsai, Chimin
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1435-1438
    • /
    • 2005
  • In hands-free telephone systems, the received speech signal is fed back to the microphone and constitutes the so-called echo. To cancel the effect of this time-varying echo path, it is necessary to device an adaptive filter between the receiving and the transmitting ends. For a typical FIR realization, the length of the fullband adaptive filter results in high computational complexity and low convergence rate. Consequently, subband adaptive filtering schemes have been proposed to improve the performance. In this work, we use deterministic approach to analyze the relationship between fullband and subband adaptive filtering structures. With block adaptive filtering structure as an intermediate stage, the analysis is divided into two parts. First, to avoid aliasing, it is found that the matrix of block adaptive filters is in the form of pseudocirculant, and the elements of this matrix are the polyphase components of the fullband adaptive filter. Second, to transmit the near-end voice signal faithfully, the analysis and the synthesis filter banks in the subband adaptive filtering structure must form a perfect reconstruction pair. Using polyphase representation, the relationship between the block and the subband adaptive filters is derived.

  • PDF

Fast Binary Wavelet Transform (고속 이진 웨이블렛 변환)

  • 강의성;이경훈;고성제
    • Proceedings of the IEEK Conference
    • /
    • 2001.09a
    • /
    • pp.25-28
    • /
    • 2001
  • A theory of binary wavelets has been recently proposed by using two-band perfect reconstruction filter banks over binary field . Binary wavelet transform (BWT) of binary images can be used as an alternative to the real-valued wavelet transform of binary images in image processing applications such as compression, edge detection, and recognition. The BWT, however, requires large amount of computations since its operation is accomplished by matrix multiplication. In this paper, a fast BWT algorithm which utilizes filtering operation instead or matrix multiplication is presented . It is shown that the proposed algorithm can significantly reduce the computational complexity of the BWT. For the decomposition and reconstruction or an N ${\times}$ N image, the proposed algorithm requires only 2LN$^2$ multiplications and 2(L-1)N$^2$addtions when the filter length is L, while the BWT needs 2N$^3$multiplications and 2N(N-1)$^2$additions.

  • PDF

RECONSTRUCTION OF LIMITED-ANGLE CT IMAGES BY AN ADAPTIVE RESILIENT BACK-PROPAGATION ALGORITHM

  • Kazunori Matsuo;Zensho Nakao;Chen, Yen-Wei;Fath El Alem F. Ah
    • Proceedings of the IEEK Conference
    • /
    • 2000.07b
    • /
    • pp.839-842
    • /
    • 2000
  • A new and modified neural network model Is proposed for CT image reconstruction from four projection directions only. The model uses the Resilient Back-Propagation (Rprop) algorithm, which is derived from the original Back-Propagation, for adaptation of its weights. In addition to the error in projection directions of the image being reconstructed, the proposed network makes use of errors in pixels between an image which passed the median filter and the reconstructed one. Improved reconstruction was obtained, and the proposed method was found to be very effective in CT image reconstruction when the given number of projection directions is very limited.

  • PDF