• 제목/요약/키워드: Recommender Technique

검색결과 83건 처리시간 0.024초

딥러닝 기반 온라인 리뷰의 언어학적 특성을 활용한 추천 시스템 성능 향상에 관한 연구 (A Study on the Enhancing Recommendation Performance Using the Linguistic Factor of Online Review based on Deep Learning Technique)

  • 장동수;이청용;김재경
    • 지능정보연구
    • /
    • 제29권1호
    • /
    • pp.41-63
    • /
    • 2023
  • 전자상거래 시장의 꾸준한 성장으로 인해 추천 시스템의 필요성은 점차 강조되고 있으며, 최근에는 추천 성능의 향상을 목적으로 리뷰 텍스트를 사용하는 연구가 활발히 진행되고 있다. 특히 많은 연구들은 리뷰 텍스트의 감성 점수를 활용하여 제안되고 있는데, 감성 점수만을 사용하는 방법론은 리뷰 텍스트에 존재하는 구체적인 선호도 정보의 활용 측면에 한계를 가지며 이는 결과적으로 성능 향상에 제약으로 작용하게 된다. 이를 개선하기 위해 본 연구는 딥러닝 기반 추천 모델에 온라인 리뷰 내 다양한 언어학적 요소들을 활용하여 고객의 선호도를 정교하게 학습할 수 있는 새로운 추천 방법론을 제안하였다. 이를 위해 먼저 고객과 상품 간 복잡한 상호작용을 고려할 수 있도록 딥러닝 모델을 통해 상호작용 관계를 비선형으로 학습하였다. 그리고 리뷰 텍스트를 효과적으로 활용할 수 있도록 언어학적 요소 중 고객의 구매 의사결정에 중요한 영향을 미치는 인지적 요인, 정서적 요인 그리고 언어 스타일 매칭을 사용하였다. 실험은 Amazon.com에서 수집한 온라인 리뷰 데이터를 사용하여 진행하였고, 실험 결과 제안 모델의 우수함을 검증할 수 있었다. 본 연구는 추천 시스템에서 리뷰 텍스트 내 고객 선호도에 대한 정보를 효과적으로 활용하는 방법론을 제안하여 연구의 이론적 및 방법론 측면에 기여하였다.

Collaborative Filtering based Recommender System using Restricted Boltzmann Machines

  • Lee, Soojung
    • 한국컴퓨터정보학회논문지
    • /
    • 제25권9호
    • /
    • pp.101-108
    • /
    • 2020
  • 추천 시스템은 전자 상거래 시에 고객들의 상품 선택의 편의를 제공하므로 반드시 구비되어야 할 기능이다. 협력 필터링은 다른 사용자들이 선호하였던 상품이나 현 사용자가 과거 선호하였던 상품들을 위주로 추천 리스트를 제공하는 기법으로서, 가장 널리 활용되는 대표적 기법이다. 최근 딥러닝 인공지능 기술을 활용하여 추천 시스템의 성능 향상을 달성하는 연구가 활발히 진행되고 있다. 본 연구에서는 사용자가 부여한 평가등급만을 이용하여 딥러닝 기술의 일종인 제한 볼츠만 기계 학습을 통해 협력 필터링 기반의 추천 시스템을 개발한다. 또한 학습의 효율성과 성능을 위하여 학습 파라미터 변경 알고리즘을 제시한다. 제안 시스템의 성능 평가를 위하여 실험 분석을 통해 기존의 다양한 전통적 협력 필터링 기법들과 비교 분석을 실시하였으며, 제안 알고리즘은 기본적인 제한 볼츠만 기계 모델보다 우수한 성능을 가져오는 것으로 확인되었다.

대학생 중도탈락 예방을 위한 기계 학습 기반 추천 시스템 구현 방안 (Implementation of a Machine Learning-based Recommender System for Preventing the University Students' Dropout)

  • 정도헌
    • 한국융합학회논문지
    • /
    • 제12권10호
    • /
    • pp.37-43
    • /
    • 2021
  • 본 연구는 대학생의 중도탈락 패턴을 식별하는 효과적인 자동 분류 기법을 제안하고, 이를 바탕으로 중도탈락을 예방하기 위한 지능형 추천 시스템의 구현 방안을 제시하는 것을 목표로 한다. 이를 위해 1) 실제 대학생의 재학/제적 데이터를 기반으로 기계 학습의 성능을 향상시킬 수 있는 데이터 처리 방안을 제안하고, 2) 5종의 기계학습 알고리즘을 이용하여 성능 비교 실험을 실시하였다. 3) 실험 결과, 제안 기법이 베이스라인에 비해 모든 알고리즘에서 우수한 성능을 보여주었다. 제적생의 식별 정확률(precision)은 랜덤 포레스트(Random Forest)를 사용할 때 최대 95.6%, 제적생의 재현율(recall)은 나이브 베이즈(Naive Bayes)를 사용할 때 최대 80.0%로 측정되었다. 4) 마지막으로, 실험 결과를 바탕으로 중도탈락 가능성이 높은 학생을 우선 상담하는 추천 시스템의 활용 방안을 제시하였다. 교육 현안 문제를 해결하기 위해 IT 분야의 기술을 활용하는 융합 연구를 통해 합리적인 의사결정을 수행할 수 있음을 확인하였으며 향후 지속적인 연구를 통해 다양한 인공지능 기술을 적용하고자 한다.

Framework of Health Recommender System for COVID-19 Self-assessment and Treatments: A Case Study in Malaysia

  • Othman, Mahfudzah;Zain, Nurzaid Muhd;Paidi, Zulfikri;Pauzi, Faizul Amir
    • International Journal of Computer Science & Network Security
    • /
    • 제21권1호
    • /
    • pp.12-18
    • /
    • 2021
  • This paper proposes a framework for the development of the health recommender system, designed to cater COVID-19 symptoms' self-assessment and monitoring as well as to provide recommendations for self-care and medical treatments. The aim is to provide an online platform for Patient Under Investigation (PUI) and close contacts with positive COVID-19 cases in Malaysia who are under home quarantine to perform daily self-assessment in order to monitor their own symptoms' development. To achieve this, three main phases of research methods have been conducted where interviews have been done to thirty former COVID-19 patients in order to investigate the symptoms and practices conducted by the Malaysia Ministry of Health (MOH) in assessing and monitoring COVID-19 patients who were under home quarantine. From the interviews, an algorithm using user-based collaborative filtering technique with Pearson correlation coefficient similarity measure is designed to cater the self-assessment and symptoms monitoring as well as providing recommendations for self-care treatments as well as medical interventions if the symptoms worsen during the 14-days quarantine. The proposed framework will involve the development of the health recommender system for COVID-19 self-assessment and treatments using the progressive web application method with cloud database and PHP codes.

사용자 기반의 협력필터링을 위한 퍼지 논리를 이용한 새로운 유사도 척도 (A New Similarity Measure using Fuzzy Logic for User-based Collaborative Filtering)

  • 이수정
    • 컴퓨터교육학회논문지
    • /
    • 제21권5호
    • /
    • pp.61-68
    • /
    • 2018
  • 협력 필터링은 다수의 상업용 추천 시스템에서 구현되어 온라인 사용자들에게 성공적으로 서비스되고 있는 핵심적 기술이다. 이 기술은 현 사용자와 유사한 평가이력을 가진 다른 사용자들로부터 항목을 추천하기 때문에, 유사도 척도는 시스템 성능에 매우 큰 영향을 미친다. 본 연구에서는 기존 유사도 측정 방법의 문제점을 해결하고자 퍼지 논리에 입각하여 사용자 평가등급의 주관성 및 모호성과 사용자들의 평가 행태를 반영하는 새로운 유사도 척도를 제안한다. 성능 평가를 위한 다양한 실험을 실시하였고, 그 결과 제안 방법은 예측 정확도와 추천 정확도 면에서 우수한 성능 개선 효과를 보였다.

유전자 알고리즘을 이용한 클러스터링 기반 협력필터링 (Clustering-based Collaborative Filtering Using Genetic Algorithms)

  • 이수정
    • 창의정보문화연구
    • /
    • 제4권3호
    • /
    • pp.221-230
    • /
    • 2018
  • 추천 시스템의 주요 방법인 협력 필터링 기술은 실제 상업용 온라인 시스템에서 성공적으로 구현되어 서비스가 제공되고 있다. 그러나, 이 기술은 본질적으로 여러 가지 단점을 내포하는데, 데이터 희소성, 콜드 스타트, 확장성 문제 등이 그 예이다. 확장성 문제를 해결하기 위하여 클러스터링 기법을 활용한 협력 필터링 방법이 연구되어 왔다. 본 연구에서 제안하는 협력 필터링 시스템에서는 가장 널리 활용되는 클러스터링 기법들 중 하나인 K-means 알고리즘의 단점을 개선하고자 유전자 알고리즘을 이용한다. 또한, 기존 연구에서 최적화된 클러스터링 결과를 추구하였던 것과는 달리, 제안 방법은 클러스터링 결과를 활용한 협력 필터링 시스템 성능의 최적화를 목표로 하므로, 실질적으로 시스템의 성능을 향상시킬 수 있다.

심층신경망 기반의 뷰티제품 추천시스템 (Deep Neural Network-Based Beauty Product Recommender)

  • 송희석
    • Journal of Information Technology Applications and Management
    • /
    • 제26권6호
    • /
    • pp.89-101
    • /
    • 2019
  • Many researchers have been focused on designing beauty product recommendation system for a long time because of increased need of customers for personalized and customized recommendation in beauty product domain. In addition, as the application of the deep neural network technique becomes active recently, various collaborative filtering techniques based on the deep neural network have been introduced. In this context, this study proposes a deep neural network model suitable for beauty product recommendation by applying Neural Collaborative Filtering and Generalized Matrix Factorization (NCF + GMF) to beauty product recommendation. This study also provides an implementation of web API system to commercialize the proposed recommendation model. The overall performance of the NCF + GMF model was the best when the beauty product recommendation problem was defined as the estimation rating score problem and the binary classification problem. The NCF + GMF model showed also high performance in the top N recommendation.

Using User Rating Patterns for Selecting Neighbors in Collaborative Filtering

  • Lee, Soojung
    • 한국컴퓨터정보학회논문지
    • /
    • 제24권9호
    • /
    • pp.77-82
    • /
    • 2019
  • Collaborative filtering is a popular technique for recommender systems and used in many practical commercial systems. Its basic principle is select similar neighbors of a current user and from their past preference information on items the system makes recommendations for the current user. One of the major problems inherent in this type of system is data sparsity of ratings. This is mainly caused from the underlying similarity measures which produce neighbors based on the ratings records. This paper handles this problem and suggests a new similarity measure. The proposed method takes users rating patterns into account for computing similarity, without just relying on the commonly rated items as in previous measures. Performance experiments of various existing measures are conducted and their performance is compared in terms of major performance metrics. As a result, the proposed measure reveals better or comparable achievements in all the metrics considered.

A Systems Engineering Approach for CEDM Digital Twin to Support Operator Actions

  • Mousa, Mostafa Mohammed;Jung, Jae Cheon
    • 시스템엔지니어링학술지
    • /
    • 제16권2호
    • /
    • pp.16-26
    • /
    • 2020
  • Improving operator performance in complex and time-critical situations is critical to maintain plant safety and operability. These situations require quick detection, diagnosis, and mitigation actions to recover from the root cause of failure. One of the key challenges for operators in nuclear power plants is information management and following the control procedures and instructions. Nowadays Digital Twin technology can be used for analyzing and fast detection of failures and transient situations with the recommender system to provide the operator or maintenance engineer with recommended action to be carried out. Systems engineering approach (SE) is used in developing a digital twin for the CEDM system to support operator actions when there is a misalignment in the control element assembly group. Systems engineering is introduced for identifying the requirements, operational concept, and associated verification and validation steps required in the development process. The system developed by using a machine learning algorithm with a text mining technique to extract the required actions from limiting conditions for operations (LCO) or procedures that represent certain tasks.

An Exploratory Study of Collaborative Filtering Techniques to Analyze the Effect of Information Amount

  • Hyun Sil Moon;Jung Hyun Yoon;Il Young Choi;Jae Kyeong Kim
    • Asia pacific journal of information systems
    • /
    • 제27권2호
    • /
    • pp.126-138
    • /
    • 2017
  • The proliferation of items increased the difficulty of customers in finding the specific items they want to purchase. To solve this problem, companies adopted recommender systems, such as collaborative filtering systems, to provide personalization services. However, companies use only meaningful and essential data given the explosive growth of data. Some customers are concerned that their private information may be exposed because CF systems necessarily deal with personal information. Based on these concerns, we analyze the effects of the amount of information on recommendation performance. We assume that a customer could choose to provide overall information or partial information. Experimental results indicate that customers who provided overall information generally demonstrated high performance, but differences exist according to the characteristics of products. Our study can provide companies with insights concerning the efficient utilization of data.