References
- Su, X., & Khoshgoftaar, T. M. (2009). A survey of collaborative filtering techniques. Advances in Artificial Intelligence, 2009.
- 이수정 (2016). 사용자 기반의 협력필터링 시스템을 위한 유사도 측정의 최적화. 컴퓨터교육학회논문지, 19(1), 111-118.
- Al-Shamri, M.Y.H. & Al-Ashwal, N.H. (2014). Fuzzy-weighted similarity measures for memory-based collaborative recommender systems. Journal of Intelligent Learning Systems and Applications, 6, 1-10.
- Bobadilla, J., Ortega, F., & Hernando, A. (2012). A collaborative filtering similarity measure based on singularities. Information Processing and Management, 48(2), 204-217. https://doi.org/10.1016/j.ipm.2011.03.007
- Kwon, H.-J., Lee, T.-H., & Hong, K.-S. (2009). Improving prediction accuracy using entropy weighting in collaborative filtering. Symposia and Workshops on Ubiquitous, Autonomic and Trusted Computing, (pp. 40-45).
- Cacheda, F., Carneiro, V., Fernandez, D., & Formoso, V. (2011). Comparison of collaborative filtering algorithms: limitations of current techniques and proposals for scalable, high-performance recommender systems. ACM Transactions on Web, 5(1), 1-33.
- Resnick, P., Iacovou, N., Suchak, M., Bergstrom, P., & Riedl, J. (1994). GroupLens: an open architecture for collaborative filtering of netnews. In Proceedings of the ACM Cconference on Computer Supported Cooperative Work (pp. 175-186). ACM
- Bellogin, A. & de Vries, A.P. (2013). Understanding similarity metrics in neighbour-based recommender systems. Proceedings of the Conference on the Theory of Information Retrieval.
- Saranya, K.G., Sadasivam, G.S., & Chandralekha, M. (2016). Performance comparison of different similarity measures for collaborative filtering technique. Indian Journal of Science and Technology, 9(29), 1-8.
- Boulkrinat, S., Hadjali, A., & Mokhtari, A. (2013). Towards recommender systems based on a fuzzy preference aggregation. Proceeding of the Eighth Conference of the European Society for Fuzzy Logic and Technology (pp. 146-153).
- Herrera-Viedma, E.S.-G., Olivas, J.A., Cerezo, A., & Romero, F.P. (2011). A Google wave-based fuzzy recommender system to disseminate information in university digital libraries 2.0. Information Sciences, 181(9), 1503-1516. https://doi.org/10.1016/j.ins.2011.01.012
- Son, L.H. (2014). HU-FCF: A hybrid user-based fuzzy collaborative filtering method in recommender systems. Expert Systems with Applications, 41, 6861-6870. https://doi.org/10.1016/j.eswa.2014.05.001
- S. Lee. (2017). Similarity measures using fuzzified ratings for collaborative filtering. Frontiers in Artificial Intelligence and Applications, 299, 269-274.
- Shannon, C.E. (1951). Prediction and entropy of printed English. The Bell System Technical Journal, 30, 50-64. https://doi.org/10.1002/j.1538-7305.1951.tb01366.x
- Wang, W., Zhang, G., & Lu, J. (2015). Collaborative filtering with entropy-driven user similarity in recommender systems. International Journal of Intelligent Systems, 30(8), 854-870. https://doi.org/10.1002/int.21735
- Herlocker, J. L., Konstan, J. A., Terveen, L. G., & Riedl, J. T. (2004). Evaluating collaborative filtering recommender systems. ACM Transactions on Information Systems, 22(1), 5-53. https://doi.org/10.1145/963770.963772
Cited by
- 소비자의 선택 과부하와 유사성 회피 성향이 온라인 추천 서비스의 혁신성과 사용 적합성 지각에 미치는 영향 vol.21, pp.2, 2019, https://doi.org/10.5805/sfti.2019.21.2.141
- 온라인 패션쇼핑몰의 개인 상품 추천서비스가 인지적 태도와 감정적 애착을 통해 서비스 사용행동에 미치는 영향 vol.23, pp.5, 2018, https://doi.org/10.5805/sfti.2021.23.5.586