DOI QR코드

DOI QR Code

A New Similarity Measure using Fuzzy Logic for User-based Collaborative Filtering

사용자 기반의 협력필터링을 위한 퍼지 논리를 이용한 새로운 유사도 척도

  • 이수정 (경인교육대학교 컴퓨터교육과)
  • Received : 2018.07.30
  • Accepted : 2018.09.19
  • Published : 2018.09.30

Abstract

Collaborative filtering is a fundamental technique implemented in many commercial recommender systems and provides a successful service to online users. This technique recommends items by referring to other users who have similar rating records to the current user. Hence, similarity measures critically affect the system performance. This study addresses problems of previous similarity measures and suggests a new similarity measure. The proposed measure reflects the subjectivity or vagueness of user ratings and the users' rating behavior by using fuzzy logic. We conduct experimental studies for performance evaluation, whose results show that the proposed measure demonstrates outstanding performance improvements in terms of prediction accuracy and recommendation accuracy.

협력 필터링은 다수의 상업용 추천 시스템에서 구현되어 온라인 사용자들에게 성공적으로 서비스되고 있는 핵심적 기술이다. 이 기술은 현 사용자와 유사한 평가이력을 가진 다른 사용자들로부터 항목을 추천하기 때문에, 유사도 척도는 시스템 성능에 매우 큰 영향을 미친다. 본 연구에서는 기존 유사도 측정 방법의 문제점을 해결하고자 퍼지 논리에 입각하여 사용자 평가등급의 주관성 및 모호성과 사용자들의 평가 행태를 반영하는 새로운 유사도 척도를 제안한다. 성능 평가를 위한 다양한 실험을 실시하였고, 그 결과 제안 방법은 예측 정확도와 추천 정확도 면에서 우수한 성능 개선 효과를 보였다.

Keywords

References

  1. Su, X., & Khoshgoftaar, T. M. (2009). A survey of collaborative filtering techniques. Advances in Artificial Intelligence, 2009.
  2. 이수정 (2016). 사용자 기반의 협력필터링 시스템을 위한 유사도 측정의 최적화. 컴퓨터교육학회논문지, 19(1), 111-118.
  3. Al-Shamri, M.Y.H. & Al-Ashwal, N.H. (2014). Fuzzy-weighted similarity measures for memory-based collaborative recommender systems. Journal of Intelligent Learning Systems and Applications, 6, 1-10.
  4. Bobadilla, J., Ortega, F., & Hernando, A. (2012). A collaborative filtering similarity measure based on singularities. Information Processing and Management, 48(2), 204-217. https://doi.org/10.1016/j.ipm.2011.03.007
  5. Kwon, H.-J., Lee, T.-H., & Hong, K.-S. (2009). Improving prediction accuracy using entropy weighting in collaborative filtering. Symposia and Workshops on Ubiquitous, Autonomic and Trusted Computing, (pp. 40-45).
  6. Cacheda, F., Carneiro, V., Fernandez, D., & Formoso, V. (2011). Comparison of collaborative filtering algorithms: limitations of current techniques and proposals for scalable, high-performance recommender systems. ACM Transactions on Web, 5(1), 1-33.
  7. Resnick, P., Iacovou, N., Suchak, M., Bergstrom, P., & Riedl, J. (1994). GroupLens: an open architecture for collaborative filtering of netnews. In Proceedings of the ACM Cconference on Computer Supported Cooperative Work (pp. 175-186). ACM
  8. Bellogin, A. & de Vries, A.P. (2013). Understanding similarity metrics in neighbour-based recommender systems. Proceedings of the Conference on the Theory of Information Retrieval.
  9. Saranya, K.G., Sadasivam, G.S., & Chandralekha, M. (2016). Performance comparison of different similarity measures for collaborative filtering technique. Indian Journal of Science and Technology, 9(29), 1-8.
  10. Boulkrinat, S., Hadjali, A., & Mokhtari, A. (2013). Towards recommender systems based on a fuzzy preference aggregation. Proceeding of the Eighth Conference of the European Society for Fuzzy Logic and Technology (pp. 146-153).
  11. Herrera-Viedma, E.S.-G., Olivas, J.A., Cerezo, A., & Romero, F.P. (2011). A Google wave-based fuzzy recommender system to disseminate information in university digital libraries 2.0. Information Sciences, 181(9), 1503-1516. https://doi.org/10.1016/j.ins.2011.01.012
  12. Son, L.H. (2014). HU-FCF: A hybrid user-based fuzzy collaborative filtering method in recommender systems. Expert Systems with Applications, 41, 6861-6870. https://doi.org/10.1016/j.eswa.2014.05.001
  13. S. Lee. (2017). Similarity measures using fuzzified ratings for collaborative filtering. Frontiers in Artificial Intelligence and Applications, 299, 269-274.
  14. Shannon, C.E. (1951). Prediction and entropy of printed English. The Bell System Technical Journal, 30, 50-64. https://doi.org/10.1002/j.1538-7305.1951.tb01366.x
  15. Wang, W., Zhang, G., & Lu, J. (2015). Collaborative filtering with entropy-driven user similarity in recommender systems. International Journal of Intelligent Systems, 30(8), 854-870. https://doi.org/10.1002/int.21735
  16. Herlocker, J. L., Konstan, J. A., Terveen, L. G., & Riedl, J. T. (2004). Evaluating collaborative filtering recommender systems. ACM Transactions on Information Systems, 22(1), 5-53. https://doi.org/10.1145/963770.963772

Cited by

  1. 소비자의 선택 과부하와 유사성 회피 성향이 온라인 추천 서비스의 혁신성과 사용 적합성 지각에 미치는 영향 vol.21, pp.2, 2019, https://doi.org/10.5805/sfti.2019.21.2.141
  2. 온라인 패션쇼핑몰의 개인 상품 추천서비스가 인지적 태도와 감정적 애착을 통해 서비스 사용행동에 미치는 영향 vol.23, pp.5, 2018, https://doi.org/10.5805/sfti.2021.23.5.586