• 제목/요약/키워드: Recommendation Technique

검색결과 227건 처리시간 0.031초

항목 속성과 평가 정보를 이용한 혼합 추천 방법 (A Hybrid Recommendation Method based on Attributes of Items and Ratings)

  • 김병만;이경
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제31권12호
    • /
    • pp.1672-1683
    • /
    • 2004
  • 추천 시스템은 일상의 정보를 필터링 해주는 웹 지능화 기술 중의 하나이다. 현재까지 협력기반 (사회기반) 추천 시스템, 내용기반 추천시스템과 이들의 장점을 혼합한 추천시스템들이 개발되어 왔다. 본 논문에서는 클러스터링 기법을 항목기반 협력필터링 틀에 적용한 일명 ICHM이라 불리는 새로운 형태의 혼합 추천 시스템을 소개한다. 이 방법은 항목의 내용 정보를 협력필터링 틀 안에 통합시킴으로써 평가 데이타의 희박성을 줄일 수 있을 뿐만 아니라 새로운 항목 추천 시 발생하는 문제점을 해결할 수 있다. ICHM 방법의 특성 및 성능을 평가하기 위하여 MovieLense 데이타를 이용한 다양한 실험을 하였다. 실험 결과, ICHM 방법이 항목기반 협력 필터링의 예측 질을 향상시킬 뿐만 아니라 새로운 항목 추천 시에도 아주 유용함을 확인할 수 있었다.

수소손상 검출과 평가기술 (Detection and Evaluation Technique of Hydrogen Attack)

  • 원순호;현양기;이종오;조경식;이재도
    • 비파괴검사학회지
    • /
    • 제22권1호
    • /
    • pp.32-37
    • /
    • 2002
  • 산업현장에서 수소는 설비를 손상시킬 수 있는 주원인 중의 하나이며, 종종 설비를 파괴시키는 사고를 발생시킨다. 수소손상에 의한 결정립계의 공동 또는 미세균열은 강재의 파괴인성과 강도를 떨어뜨리는 원인이 되고, 따라서 과거 제한적인 방법으로 수소손상을 평가하기 위한 시도가 수행되었다. 본 연구에서는 초음파를 적용하여 수소손상을 검출하고 평가하기 위한 연구를 수행하였다. 미세조직 시험에 의해 확인된 시험편을 이용하여 초음파의 속도와 감쇠계수를 구한 결과, 수소손상에 의해서 초음파 속도는 감소하고 감쇠는 현저하게 증가하는 것으로 나타났다. 이러한 결과를 바탕으로 수소손상을 검출하기 위한 신뢰성 있는 평가법을 제시하였다.

수상레저용 보트 설계를 위한 협력적 필터링 기반 사용자 추천시스템 개발 (Development of Collaborative Filtering based User Recommender Systems for Water Leisure Boat Model Design)

  • 오중덕;박찬홍;김종수;성현경
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2014년도 춘계학술대회
    • /
    • pp.413-416
    • /
    • 2014
  • 최근 전 세계적으로 사회적 여건 변화와 소비자의 욕구 변화에 따라 여가 중심으로의 가치관이 변화하면서 다양한 레저스포츠의 수요가 점차 증가하고 있다. 특히 여름철 수상 레포츠에 대한 관심과 참여율이 증가하고 있는 실정이며, 정형화되어있는 수상레저용 보트의 다양한 선체 디자인에 대한 욕구도 증가하고 있다. 따라서 본 논문에서는 소비자들의 선체 디자인에 대한 다양한 욕구의 변화에 적극적으로 대응할 수 있도록 협력적 필터링 기법을 이용한 수상레저용 보트 디자인 설계를 위한 추천시스템을 개발하고자 한다. 이를 위하여 소비자 설문조사를 통해 보트 디자인 관련 감성을 선정하고, 요인분석과 평가로 감성을 도출하여 고객 감성 선호측면에서의 보트 디자인 배열을 제시하였다. 또한 사용자의 선호도를 반영한 보트 디자인에 따른 감성 어휘 선정을 위해서 보트의 선체, 바디, 추진 장치 등의 요소에 따라 분석하여 사용자의 선호도에 맞는 수상레저용 보트 모델을 제시하였다.

  • PDF

Jaccard Index Reflecting Time-Context for User-based Collaborative Filtering

  • Soojung Lee
    • 한국컴퓨터정보학회논문지
    • /
    • 제28권10호
    • /
    • pp.163-170
    • /
    • 2023
  • 추천 시스템의 구현 방식들 중 하나인 사용자 기반의 협력 필터링 기법은 유사한 평가 이력을 가진 이웃 사용자들의 산출을 기반으로 하여, 이들의 선호 항목들을 추천한다. 그러나 공통된 평가 이력이 적을 경우에 추천의 질이 현저히 저하되는 데이터 희소성 문제를 근본적으로 갖고 있다. 이러한 문제의 해결을 위하여 많은 기존 연구에서 자카드 계수를 유사도 척도와 접목하는 다양한 방법들을 제안해 왔다. 본 연구에서는 자카드 계수에 시간 인지 개념을 도입하여 공통 항목의 평가 시간에 따라 다른 비중으로 가중합하는 방안을 제시한다. 다양한 성능 척도와 시간 주기를 활용하여 실험을 수행한 결과, 제안 방법이 대부분의 척도에서 원래의 자카드 계수에 비해 가장 우수한 성능을 보였으며, 최적의 시간 주기는 성능 척도의 종류에 따라 다름을 확인하였다.

다중모형조합기법을 이용한 상품추천시스템 (Product Recommender Systems using Multi-Model Ensemble Techniques)

  • 이연정;김경재
    • 지능정보연구
    • /
    • 제19권2호
    • /
    • pp.39-54
    • /
    • 2013
  • 전자상거래의 폭발적 증가는 소비자에게 더 유리한 많은 구매 선택의 기회를 제공한다. 이러한 상황에서 자신의 구매의사결정에 대한 확신이 부족한 소비자들은 의사결정 절차를 간소화하고 효과적인 의사결정을 위해 추천을 받아들인다. 온라인 상점의 상품추천시스템은 일대일 마케팅의 대표적 실현수단으로써의 가치를 인정받고 있다. 그러나 사용자의 기호를 제대로 반영하지 못하는 추천시스템은 사용자의 실망과 시간낭비를 발생시킨다. 본 연구에서는 정확한 사용자의 기호 반영을 통한 추천기법의 정교화를 위해 데이터마이닝과 다중모형조합기법을 이용한 상품추천시스템 모형을 제안하고자 한다. 본 연구에서 제안하는 모형은 크게 두 개의 단계로 이루어져 있으며, 첫 번째 단계에서는 상품군 별 우량고객 선정 규칙을 도출하기 위해서 로지스틱 회귀분석 모형, 의사결정나무 모형, 인공신경망 모형을 구축한 후 다중모형조합기법인 Bagging과 Bumping의 개념을 이용하여 세 가지 모형의 결과를 조합한다. 두 번째 단계에서는 상품군 별 연관관계에 관한 규칙을 추출하기 위하여 장바구니분석을 활용한다. 상기의 두 단계를 통하여 상품군 별로 구매가능성이 높은 우량고객을 선정하여 그 고객에게 관심을 가질만한 같은 상품군 또는 다른 상품군 내의 다른 상품을 추천하게 된다. 제안하는 상품추천시스템은 실제 운영 중인 온라인 상점인 'I아트샵'의 데이터를 이용하여 프로토타입을 구축하였고 실제 소비자에 대한 적용가능성을 확인하였다. 제안하는 모형의 유용성을 검증하기 위하여 제안 상품추천시스템의 추천과 임의 추천을 통한 추천의 결과를 사용자에게 제시하고 제안된 추천에 대한 만족도를 조사한 후 대응표본 T검정을 수행하였으며, 그 결과 사용자의 만족도를 유의하게 향상시키는 것으로 나타났다.

확률적 퍼지 룰 기반 학습에 의한 개인화된 미디어 제어 방법 (Personalized Media Control Method using Probabilistic Fuzzy Rule-based Learning)

  • 이형욱;김용휘;이태엽;박광현;김용수;조준면;변증남
    • 한국지능시스템학회논문지
    • /
    • 제17권2호
    • /
    • pp.244-251
    • /
    • 2007
  • 사용자 의도 파악(intention reading) 기술은 스마트 홈과 같은 복잡한 유비쿼터스(ubiquitous) 환경에서 사용자에게 보다 편리하고 개인화된(personalized) 서비스 제공이 가능하도록 해준다. 또한 학습 기능(learning capability)은 지식 발견(knowledge discovery)의 관점에서 의도 파악 기술의 핵심 요소 기술의 하나로 자리 매김하고 있다 이 논문에서는 스마트 홈(smart home) 환경에서 제공 가능한 개인화된 서비스 중의 하나로, 개인화된 미디어 제어 방법에 대한 내용을 다룬다. 특히, 사람의 행동 패턴과 같은 데이터는 패턴 분류의 관점에서 구분해야 할 클래스(class)에 비해 입력 정보가 불충분한 경우가 많아서 비일관적인(inconsistent) 데이터가 많으므로, 퍼지 논리(fuzzy logic)와 확률 (probability)의 개념을 효과적으로 병행해야 의미 있는 지식을 추출해 낼 수 있다. 이를 위하여 반복 퍼지 지도 클러스터링(IFCS; Iterative Fuzzy Clustering with Supervision) 알고리즘에 기반하여 주어진 데이터 패턴으로부터 확률적 퍼지 룰(probabilistic fuzzy rule)을 얻어 내는 방법에 대해 설명한다. 또한 이를 이용한 다양한 학습 제어 구조를 바탕으로 개인화된 미디어 서비스를 추천해 줄 수 있는 방법에 대해서 설명하도록 하고, 실험 결과를 통해 제안된 시스템의 효용성을 보이도록 한다.

Word2Vec 기반의 의미적 유사도를 고려한 웹사이트 키워드 선택 기법 (Web Site Keyword Selection Method by Considering Semantic Similarity Based on Word2Vec)

  • 이동훈;김관호
    • 한국전자거래학회지
    • /
    • 제23권2호
    • /
    • pp.83-96
    • /
    • 2018
  • 문서를 대표하는 키워드를 추출하는 것은 문서의 정보를 빠르게 전달할 수 있을 뿐만 아니라 문서의 검색, 분류, 추천시스템 등의 자동화서비스에 유용하게 사용 될 수 있어 매우 중요하다. 그러나 웹사이트 문서에서 출현하는 단어의 빈도수, 단어의 동시출현관계를 통한 그래프 알고리즘 등의 기반으로 키워드를 추출할 경우 웹페이지 구조상 잠재적으로 주제와 관련이 없는 다양한 단어를 포함하고 있는 문제점과 한국어 형태소 분석의 정확성이 떨어지는 형태소 분석기 성능의 한계점 때문에 의미적인 키워드를 추출하는데 어려움이 존재한다. 따라서 본 논문에서는 의미적 단어 위주로 구축된 후보키워드들의 집합과 의미적 유사도 기반의 후보 키워드를 선택하는 방법으로써 의미적 키워드를 추출하지 못하는 문제점과 형태소 분석의 정확성이 떨어지는 문제점을 해결하고 일관성 없는 키워드를 제거하는 필터링 과정을 통해 최종 의미적 키워드를 추출하는 기법을 제안한다. 실 중소기업 웹페이지를 통한 실험 결과, 본 연구에서 제안한 기법의 성능이 통계적 유사도 기반의 키워드 선택기법보다 34.52% 향상된 것을 확인하였다. 따라서 단어 간의 의미적 유사성을 고려하고 일관성 없는 키워드를 제거함으로써 문서에서 키워드를 추출하는 성능을 향상시켰음을 확인하였다.

개인화 추천 시스템에서 연관 관계 군집에 의한 아이템 기반의 협력적 필터링 기술 (An Item-based Collaborative Filtering Technique by Associative Relation Clustering in Personalized Recommender Systems)

  • 정경용;김진현;정헌만;이정현
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제31권4호
    • /
    • pp.467-477
    • /
    • 2004
  • 추천 시스템은 예전에는 몇몇 혁신적인 전자상거래(E-commerce) 사이트에서만 사용되어 왔으나 현재는 전자상거래를 새롭게 재구성하는 필수적인 비즈니스 도구가 되어가고 있다. 그리고 협력적 필터링은 이론과 실무 분야 모두에서 가장 성공적으로 평가받은 추천 기법 중 하나이다. 그러나 개인화 추천 시스템을 구축하기 위해서는 두 가지 문제를 동시에 고려해야 한다. 즉 초기 평가 문제와 희박성 문제이다. 본 논문에서는 연관 관계 군집과 연관 규칙의 향상도를 이용하여 이러한 문제를 해결하고자 한다. 사용자의 평가 데이타를 사용하여 아이템간의 향상도를 산출하고, a-cut에 의한 임계값을 아이템들간의 연관성에 적용한다. 연관 관계 군집의 효율성을 높이기 위해서 기존의 Hypergraph Clique Clustering 알고리즘과 본 연구에서 제안하는 Split Cluster Method를 이용하였다. 군집이 완성되면, 각 군집 내부에서 아이템간의 유사도를 산출하고 빠른 액세스를 위해 인덱스를 데이터베이스에 저장한다. 새로운 아이템들의 선호도 예측 시에 생성한 인덱스를 적용시킨다. 성능을 평가하기 위해서 기존의 협력적 필터링 기술과 비교 평가하였다. 그 결과 기존의 협력적 필터링 기술의 문제점을 해결하여 예측의 정확도를 높이는데 효과적임을 확인하였다.

순차적 레이어 필터링을 이용한 상품 판매 연관도 분석 (Association Analysis of Product Sales using Sequential Layer Filtering)

  • 방선호;이강현;장지영;;신광섭
    • 한국빅데이터학회지
    • /
    • 제7권1호
    • /
    • pp.213-224
    • /
    • 2022
  • 물류와 유통에서 장바구니 분석(MBA: Market Basket Analysis)은 주요 판매 상품 간의 연관성을 분석하고, 내부 운영 효율성을 높이기 위한 중요한 수단으로 활용된다. 특히, 장바구니 분석의 결과는 상품 구매예측, 상품 추천 및 매장의 상품 전시 구조 등 의사결정 과정에 중요한 참고자료로 활용된다. 최근 전자상거래의 발전으로 하나의 유통 및 물류 기업이 취급하는 품목의 수가 급격하게 증가하면서 기존의 분석기법인 Apriori와 FP-Grwoth 등의 방법은 계산량의 기하급수적 증가로 인한 속도저하와 실제 비즈니스에 적용하기 위한 중요한 연관규칙을 살피기에는 한계가 있다. 본 연구에서는 이러한 한계를 극복하기 위해, 상품의 최상위 분류체계인 Main-Category 수준에서는 상품의 판매량을 함께 고려할 수 있는 utility item set mining 기법을 활용하여 주로 함께 판매된 상품군을 우선 선별하였다. 그 후, sub-category 수준에서는 FP-Growth를 활용하여 함께 판매되는 상품 유형을 식별하였다. 이렇게 순차적 레이어 필터링 기법을 활용하여 불필요한 연산을 줄일 수 있어 현실적으로 활용가능한 결과를 제시할 수 있다.

협력필터링과 사회연결망을 이용한 신규고객 추천방법에 대한 연구 (The Research on Recommender for New Customers Using Collaborative Filtering and Social Network Analysis)

  • 신창훈;이지원;양한나;최일영
    • 지능정보연구
    • /
    • 제18권4호
    • /
    • pp.19-42
    • /
    • 2012
  • 고객이 상품을 구매하는 패턴이 빠르게 변화하고 있다. 오프라인에서 고객이 직접 상품을 보고, 체험한 후 구매하던 패턴이 TV홈쇼핑, 인터넷 쇼핑 등 고객이 편리한 장소에서 자유롭게 구매하는 방법으로 확산되었다. 이처럼 구매 가능한 상품의 범위는 점점 더 다양해지고 있지만 이로 인하여 고객이 상품을 구매할 때 생기는 번거로움은 더욱 커지고 있다. 오프라인에서는 물건을 직접보고 구매하기 때문에 반품율이 낮은 반면에 온라인 구매 물품은 배송과 환불 등에서 복잡한 일들이 많이 발생한다. 온라인을 통해서 물건을 구매할 때 상품에 대한 사전 정보는 매우 한정적이며 실제로 물건을 구매했을 경우 고객이 생각했던 것과 다를 수 있다. 이러한 결과는 결국 고객의 불만족 및 구매취소로 이어진다. 또한 TV홈쇼핑이나 인터넷 쇼핑 등을 통해서 물건을 구매할 때 고객들은 이미 상품을 구매한 고객의 리뷰에도 관심을 기울이고 있다. 좋은 평가를 받은 상품은 더 많은 매출로 이어질 수 있기 때문에 기업은 이에 관심을 기울일 필요가 있다. 고객의 욕구를 만족시킬 수 있는 적절한 상품을 추천해 주고 이를 구매로 연결시키는 것은 기업의 이윤 창출과 직결되기 때문에 그 중요성이 강조된다. 고객을 위한 추천방법은 베스트셀러기반 추천방법, 인구통계 정보기반 추천방법, 최소질의대상 상품결정방법, 내용필터링기법, 협력필터링기법 등이 존재하며, 이에 대한 많은 연구가 활발하게 진행되고 있다. 그러나 위의 방법들을 신규고객에게 적용하는 것에는 문제가 발생할 수 있다. 신규고객은 상품에 대한 과거 구매이력이 존재하지 않기 때문이다. 이를 해결하기 위한 방안으로 가입 시, 고객의 인구통계적 정보나 선호도에 대한 응답을 유도하는 방법을 활용할 수 있다. 그러나 고객이 이에 대한 번거로움을 느낄 수도 있으며, 불완전한 답변을 하게 되면 추천의 정확도는 감소한다. 최근 이미 상품을 구매한 고객의 리뷰 및 기업에서 추천하는 제품에 의존하는 고객들이 증가하면서 이를 악용하는 사례도 자주 등장한다. 결국 추천에 대한 고객들의 신뢰는 감소하게 될 것이다. 따라서 좀 더 명확한 방식의 추천시스템이 절실하며, 이것이 개선된다면 는 곧 고객들의 신뢰 증가로 이어질 것이다. 본 연구에서는 협력필터링기법과 사회연결망기법의 중심성을 결합한 분석을 시도하였다. 중심성은 신규고객의 선호도를 기존고객들의 데이터를 통하여 유추하기 위하여 활용되는 정보이다. 기존 연구들에서는 기존고객들의 구매 가운데 구매성향이 유사한 고객들의 정보에 초점을 맞추고 있으며 구매성향이 다른 고객들의 정보에 대한 분석은 이루어지고 있지 않다. 그러나 이처럼 구매성향이 서로 다른 고객들의 정보를 활용한다면 추천의 정확성이 더 향상되지 않을까 하는 점을 기반으로 데이터들을 다양한 방식으로 분석하였다. 연구에 사용된 데이터는 미네소타대학의 GroupLens Research Project팀이 협력필터링기법을 통하여 영화를 추천하기 위해 만든 MovieLens의 데이터이다. 이는 1,684편의 영화에 대한 선호도를 943명이 응답한 정보로 총 100,000개의 데이터가 있다. 이를 시간 순으로 구분하여 초기 50,000개의 데이터를 기존고객의 데이터로, 후기 50,000개의 데이터를 신규고객의 데이터로 사용하였다. 이 때, 신규고객과 기존고객은 연구자가 임의로 구분한 것이다. 따라서 신규고객이라고 표현되는 고객의 데이터는 실제로 추천시스템을 통해 정보를 제공받은 고객이라고는 볼 수 없다. 그러나 현실적으로 실제 신규고객의 데이터를 수집하는 것이 쉽지 않기 때문에 전체 고객의 정보를 시간 순으로 구분하고 신규고객으로 분류한 것임을 밝혀둔다. 제시된 추천시스템은 [+]집단 추천시스템, [-]집단 추천시스템, 통합 추천시스템으로 총 3가지이다. [+]집단 추천시스템은 기존의 연구들과 유사한 방식으로 유사도가 높은 고객들을 신규고객의 이웃고객으로 분석하였다. 유사도가 높다는 것은 다른 고객들과 상품 구매에 대한 성향이 유사한 것을 의미한다. 또한 [-]집단 추천시스템은 유사도가 낮고 다른 고객들과 상품의 구매패턴이 반대에 가까운 고객들의 데이터를 활용하였으며, 통합 추천시스템은 [+]집단 추천시스템과 [-]집단 추천시스템을 결합한 방식이다. [+]집단 추천시스템과 [-]집단 추천시스템에서 각각 추천된 영화 가운데 중복되는 영화만을 신규고객에게 추천하는 방식이다. 다양한 방법의 시도를 통하여 적절한 추천시스템을 찾고, 추천시스템의 정확도를 향상시키는데 그 목적이 있다. 활용된 데이터의 분석 결과는 통합 추천시스템이 정확도가 가장 높았으며 [-]집단 추천시스템, [+]집단 추천시스템의 순인 것으로 나타났다. 이는 통합 추천시스템이 가장 효율적일 것이라는 연구자의 추측과 일치하는 결과이다. 각각의 추천시스템은 정확도의 변화를 쉽게 비교할 수 있도록 등고선지도 및 그래프를 이용하여 나타냈다. 연구의 한계점으로는 연구자가 제시한 통합 추천시스템과 [-]집단 추천시스템에 대한 정확도는 향상되었지만 이는 임의로 구분한 기준을 바탕으로 분석하였다는 점이다. 실제 추천된 영화를 바탕으로 신규고객이 영화를 선택 한 것이 아니라 기존고객의 데이터를 임의로 분류하였기 때문이다. 따라서 이는 추천 영화가 실제 고객에 미친 영향이 아니라는 한계가 존재한다. 또한 영화가 아닌 다른 상품에 대해서 이 추천시스템을 적용하였을 경우 추천 정확도에는 차이가 있을 수 있다. 따라서 추천시스템을 적용할 때에는 각 상품 및 고객집단의 특성에 적합한 적용이 필요하다.