• Title/Summary/Keyword: Recommendation Model

Search Result 697, Processing Time 0.019 seconds

Deep Learning-based Evolutionary Recommendation Model for Heterogeneous Big Data Integration

  • Yoo, Hyun;Chung, Kyungyong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.9
    • /
    • pp.3730-3744
    • /
    • 2020
  • This study proposes a deep learning-based evolutionary recommendation model for heterogeneous big data integration, for which collaborative filtering and a neural-network algorithm are employed. The proposed model is used to apply an individual's importance or sensory level to formulate a recommendation using the decision-making feedback. The evolutionary recommendation model is based on the Deep Neural Network (DNN), which is useful for analyzing and evaluating the feedback data among various neural-network algorithms, and the DNN is combined with collaborative filtering. The designed model is used to extract health information from data collected by the Korea National Health and Nutrition Examination Survey, and the collaborative filtering-based recommendation model was compared with the deep learning-based evolutionary recommendation model to evaluate its performance. The RMSE is used to evaluate the performance of the proposed model. According to the comparative analysis, the accuracy of the deep learning-based evolutionary recommendation model is superior to that of the collaborative filtering-based recommendation model.

Customer-based Recommendation Model for Next Merchant Recommendation

  • Bayartsetseg Kalina;Ju-Hong Lee
    • Smart Media Journal
    • /
    • v.12 no.5
    • /
    • pp.9-16
    • /
    • 2023
  • In the recommendation system of the credit card company, it is necessary to understand the customer patterns to predict a customer's next merchant based on their histories. The data we want to model is much more complex and there are various patterns that customers choose. In such a situation, it is necessary to use an effective model that not only shows the relevance of the merchants, but also the relevance of the customers relative to these merchants. The proposed model aims to predict the next merchant for the customer. To improve prediction performance, we propose a novel model, called Customer-based Recommendation Model (CRM), to produce a more efficient representation of customers. For the next merchant recommendation system, we use a synthetic credit card usage dataset, BC'17. To demonstrate the applicability of the proposed model, we also apply it to the next item recommendation with another real-world transaction dataset, IJCAI'16.

Digital Signage System Based on Intelligent Recommendation Model in Edge Environment: The Case of Unmanned Store

  • Lee, Kihoon;Moon, Nammee
    • Journal of Information Processing Systems
    • /
    • v.17 no.3
    • /
    • pp.599-614
    • /
    • 2021
  • This paper proposes a digital signage system based on an intelligent recommendation model. The proposed system consists of a server and an edge. The server manages the data, learns the advertisement recommendation model, and uses the trained advertisement recommendation model to determine the advertisements to be promoted in real time. The advertisement recommendation model provides predictions for various products and probabilities. The purchase index between the product and weather data was extracted and reflected using correlation analysis to improve the accuracy of predicting the probability of purchasing a product. First, the user information and product information are input to a deep neural network as a vector through an embedding process. With this information, the product candidate group generation model reduces the product candidates that can be purchased by a certain user. The advertisement recommendation model uses a wide and deep recommendation model to derive the recommendation list by predicting the probability of purchase for the selected products. Finally, the most suitable advertisements are selected using the predicted probability of purchase for all the users within the advertisement range. The proposed system does not communicate with the server. Therefore, it determines the advertisements using a model trained at the edge. It can also be applied to digital signage that requires immediate response from several users.

Auxiliary Stacked Denoising Autoencoder based Collaborative Filtering Recommendation

  • Mu, Ruihui;Zeng, Xiaoqin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.6
    • /
    • pp.2310-2332
    • /
    • 2020
  • In recent years, deep learning techniques have achieved tremendous successes in natural language processing, speech recognition and image processing. Collaborative filtering(CF) recommendation is one of widely used methods and has significant effects in implementing the new recommendation function, but it also has limitations in dealing with the problem of poor scalability, cold start and data sparsity, etc. Combining the traditional recommendation algorithm with the deep learning model has brought great opportunity for the construction of a new recommender system. In this paper, we propose a novel collaborative recommendation model based on auxiliary stacked denoising autoencoder(ASDAE), the model learns effective the preferences of users from auxiliary information. Firstly, we integrate auxiliary information with rating information. Then, we design a stacked denoising autoencoder based collaborative recommendation model to learn the preferences of users from auxiliary information and rating information. Finally, we conduct comprehensive experiments on three real datasets to compare our proposed model with state-of-the-art methods. Experimental results demonstrate that our proposed model is superior to other recommendation methods.

The Effect of Online Travel Agency's Recommendation Information on Purchase Decision Making and Reuse Intention (온라인 여행사의 추천정보가 구매의사결정과 재사용의도에 미치는 영향)

  • Chung, Nam-Ho;Um, Tae-Hyee
    • The Journal of Information Systems
    • /
    • v.26 no.3
    • /
    • pp.149-169
    • /
    • 2017
  • Purpose The purpose of this study is to investigate how OTA recommendation influences users' purchase decision making and reuse intention based on the users' destination type. And we compare the results of domestic destination and overseas destination. Design/methodology/approach This research model was designed with the recommendation elements of OTA. And this study conducted an empirical analysis using self-administered questionnaires. The target of the analysis is an individual who has purchased hotel rooms through the OTA for the past one year. A total of 374 usable data were collected (177 domestic respondents and 197 overseas respondents) and analyzed using partial least squares analysis using Smart-PLS 3.0. Findings Two OTA recommendation characteristics - recommendation accuracy and recommendation objectivity were significant in overall model. And easy of decision making was significantly affect to OTA reuse intention. Also, only recommendation accuracy variable was revealed to significant moderating variable between domestic model and overseas model.

Deep Neural Network-Based Beauty Product Recommender (심층신경망 기반의 뷰티제품 추천시스템)

  • Song, Hee Seok
    • Journal of Information Technology Applications and Management
    • /
    • v.26 no.6
    • /
    • pp.89-101
    • /
    • 2019
  • Many researchers have been focused on designing beauty product recommendation system for a long time because of increased need of customers for personalized and customized recommendation in beauty product domain. In addition, as the application of the deep neural network technique becomes active recently, various collaborative filtering techniques based on the deep neural network have been introduced. In this context, this study proposes a deep neural network model suitable for beauty product recommendation by applying Neural Collaborative Filtering and Generalized Matrix Factorization (NCF + GMF) to beauty product recommendation. This study also provides an implementation of web API system to commercialize the proposed recommendation model. The overall performance of the NCF + GMF model was the best when the beauty product recommendation problem was defined as the estimation rating score problem and the binary classification problem. The NCF + GMF model showed also high performance in the top N recommendation.

Deep Learning-based Product Recommendation Model for Influencer Marketing (인플루언서를 위한 딥러닝 기반의 제품 추천모델 개발)

  • Song, Hee Seok;Kim, Jae Kyung
    • Journal of Information Technology Applications and Management
    • /
    • v.29 no.3
    • /
    • pp.43-55
    • /
    • 2022
  • In this study, with the goal of developing a deep learning-based product recommendation model for effective matching of influencers and products, a deep learning model with a collaborative filtering model combined with generalized matrix decomposition(GMF), a collaborative filtering model based on multi-layer perceptron (MLP), and neural collaborative filtering and generalized matrix Factorization (NeuMF), a hybrid model combining GMP and MLP was developed and tested. In particular, we utilize one-class problem free boosting (OCF-B) method to solve the one-class problem that occurs when training is performed only on positive cases using implicit feedback in the deep learning-based collaborative filtering recommendation model. In relation to model selection based on overall experimental results, the MLP model showed highest performance with weighted average precision, weighted average recall, and f1 score were 0.85 in the model (n=3,000, term=15). This study is meaningful in practice as it attempted to commercialize a deep learning-based recommendation system where influencer's promotion data is being accumulated, pactical personalized recommendation service is not yet commercially applied yet.

Knowledge Recommendation Based on Dual Channel Hypergraph Convolution

  • Yue Li
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.11
    • /
    • pp.2903-2923
    • /
    • 2023
  • Knowledge recommendation is a type of recommendation system that recommends knowledge content to users in order to satisfy their needs. Although using graph neural networks to extract data features is an effective method for solving the recommendation problem, there is information loss when modeling real-world problems because an edge in a graph structure can only be associated with two nodes. Because one super-edge in the hypergraph structure can be connected with several nodes and the effectiveness of knowledge graph for knowledge expression, a dual-channel hypergraph convolutional neural network model (DCHC) based on hypergraph structure and knowledge graph is proposed. The model divides user data and knowledge data into user subhypergraph and knowledge subhypergraph, respectively, and extracts user data features by dual-channel hypergraph convolution and knowledge data features by combining with knowledge graph technology, and finally generates recommendation results based on the obtained user embedding and knowledge embedding. The performance of DCHC model is higher than the comparative model under AUC and F1 evaluation indicators, comparative experiments with the baseline also demonstrate the validity of DCHC model.

Point of Interest Recommendation System Using Sentiment Analysis

  • Gaurav Meena;Ajay Indian;Krishna Kumar Mohbey;Kunal Jangid
    • Journal of Information Science Theory and Practice
    • /
    • v.12 no.2
    • /
    • pp.64-78
    • /
    • 2024
  • Sentiment analysis is one of the promising approaches for developing a point of interest (POI) recommendation system. It uses natural language processing techniques that deploy expert insights from user-generated content such as reviews and feedback. By applying sentiment polarities (positive, negative, or neutral) associated with each POI, the recommendation system can suggest the most suitable POIs for specific users. The proposed study combines two models for POI recommendation. The first model uses bidirectional long short-term memory (BiLSTM) to predict sentiments and is trained on an election dataset. It is observed that the proposed model outperforms existing models in terms of accuracy (99.52%), precision (99.53%), recall (99.51%), and F1-score (99.52%). Then, this model is used on the Foursquare dataset to predict the class labels. Following this, user and POI embeddings are generated. The next model recommends the top POIs and corresponding coordinates to the user using the LSTM model. Filtered user interest and locations are used to recommend POIs from the Foursquare dataset. The results of our proposed model for the POI recommendation system using sentiment analysis are compared to several state-of-the-art approaches and are found quite affirmative regarding recall (48.5%) and precision (85%). The proposed system can be used for trip advice, group recommendations, and interesting place recommendations to specific users.

Design and Implementation of AI Recommendation Platform for Commercial Services

  • Jong-Eon Lee
    • International journal of advanced smart convergence
    • /
    • v.12 no.4
    • /
    • pp.202-207
    • /
    • 2023
  • In this paper, we discuss the design and implementation of a recommendation platform actually built in the field. We survey deep learning-based recommendation models that are effective in reflecting individual user characteristics. The recently proposed RNN-based sequential recommendation models reflect individual user characteristics well. The recommendation platform we proposed has an architecture that can collect, store, and process big data from a company's commercial services. Our recommendation platform provides service providers with intuitive tools to evaluate and apply timely optimized recommendation models. In the model evaluation we performed, RNN-based sequential recommendation models showed high scores.