• Title/Summary/Keyword: Recombinant Protein Production

Search Result 496, Processing Time 0.024 seconds

Effect of AcNPV Infection Conditions on Recombinant Protein Production in Spodoptera frugiperda 21 Cells (AcNPV 감염 조건이 Spodoptera frugiperda 21 세포에서의 재조합 단백질 생산에 미치는 영향)

  • 김지선;이기웅;강석권;양재명;정인식
    • Microbiology and Biotechnology Letters
    • /
    • v.21 no.5
    • /
    • pp.504-510
    • /
    • 1993
  • The effect of AcNPV infection conditions such as serum concentration, pH, CaCl2, lysosomotropic agent, cell density at infection, agitation, aeration and nutritional supplementattion on recombinant protein production in Spodoptera frugiperda 21 cells was investigated using tissue culture flask, bottle and spinner flask. It was shown that serum, CaCl2, pH and cell density at infection affected recombinant production. The lysosomotropic agent did not significantly influence recombinant protein production.

  • PDF

Production of a Fusion Protein Containing the Antigenic Domain 1 of Human Cytomegalovirus Glycoprotein B

  • Sousa Fani;Ferreira Susana;Queiroz Joao;Domingues Fernanda
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.7
    • /
    • pp.1026-1031
    • /
    • 2006
  • The optimization of the production of a fusion protein containing the antigenic domain 1 (AD-1) is of a great importance, considering its use in diagnostic tests. The fusion protein is produced by the fermentation of a recombinant strain of Escherichia coli containing the plasmid Mbg58, which expresses the AD-1 (aa 484-650) of human cytomegalovirus glycoprotein B as a fusion protein together with aa 1-375 of ${\beta}-galactosidase$. An important characteristic of promoters (lac and derivatives) used in recombinant protein production in E. coli is their inducibility. Induction by IPTG is widely used for basic research; however, its use in large-scale production is undesirable because of its high cost and toxicity. In this work, studies using different inducers and carbon sources for the production of a fusion protein containing the AD-l were performed. The results showed that lactose could be used as an inducer in the fermentation process for the production of this protein, and that expression levels could exceed those achieved with IPTG. The use of lactose for protein expression in E. coli should be extremely useful for the inexpensive, large-scale production of heterologous proteins in E. coli. Addition of sucrose to the fermentation medium improved the yield of recombinant protein, whereas addition of fructose or trehalose decreased the yield.

Seeds as Repositories of Recombinant Proteins in Molecular Farming

  • Moloney, Maurice M.
    • Korean Journal of Plant Tissue Culture
    • /
    • v.27 no.4
    • /
    • pp.283-297
    • /
    • 2000
  • Seeds are an ideal repository for recombinant proteins in molecular farming applications. However, in order to use plant seeds efficiently for the production of such proteins, it is necessary to understand a number of fundamental biological properties of seeds. This includes a full understanding of promoters which function in a seed-specific manner, the subcellular targeting of the desired polypeptide and the final form in which a protein is stored. Once a biologically active protein has been deposited in a seed, it is also critical that the protein can be extracted and purified efficiently. In this review, these issues are examined critically to provide a number of approaches which may be adopted for production of recombinant proteins in plants. Particular attention is paid to the relationship between subcellular localization and protein extraction and purification. The robustness and flexibility of seed-based production is illustrated by examples close to or already in commercial production.

  • PDF

High-Level Production of Spider Silk Protein by Fed-Batch Cultivation of Recombinant Escherichia coli and Its Purification

  • Lee, Seok-Jae;Lee, Sang-Yeop
    • 한국생물공학회:학술대회논문집
    • /
    • 2001.11a
    • /
    • pp.719-722
    • /
    • 2001
  • Silk proteins from Nephila clavipes are fibrous proteins containing repetitive sequences with both crystalline and amorphous domains. In order to obtain high-level production of silk protein, the synthetic genes had 16 contiguous units of the consensus repeat sequence of the silk protein were expressed in Escherichia coli BL21(DE3) under the strong inducible T7 promoter. For production of recombinant silk protein in large amounts, pH-stat fed-batch cultures were carried out. The recombinant silk protein was produced as soluble forms in E. coli, and the recombinant silk protein content was as high as 11% of the total protein. When cells were induced at $OD_{600}$ of 60, the amount of silk protein produced was 6.49 g/L. After simple purification steps, 9.2 mg of silk protein that was more than 80% pure was obtained from a 50 mL culture, and the recovery yield was 26.3%.

  • PDF

Expression of porcine circovirus type 2 capsid protein fused with partial polyhedrin using baculovirus

  • Lee, Jun Beom;Bae, Sung Min;Shin, Tae Young;Woo, Soo Dong
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.30 no.2
    • /
    • pp.50-57
    • /
    • 2015
  • Porcine circovirus type 2 (PCV2) is an important infectious swine virus causing postweaning multisystemic wasting syndrome (PMWS). PCV2 capsid protein, encoded by ORF2 has type-specific epitopes, is very immunogenic, and is associated with the induction of neutralizing antibodies. For the efficient production of capsid protein, recombinant Autographa californica nucleopolyhedroviruses were generated to express ORF2 fused with two forms of a partial polyhedrin. Recombinant capsid protein was produced successfully with the partial polyhedrin fusion form and the yield was high, as was shown by SDS-PAGE. Production of recombinant capsid proteins in insect cells was confirmed by Western blot analysis using anti-His monoclonal antibody, anti-ORF2 monoclonal antibody, and anti-PCV2 porcine serum. Fusion expression with amino acids 19 to 110 of the polyhedrin increased the production of recombinant capsid protein, but fusion with amino acids 32 to 85 did not. Additionally, PCV2 capsid protein is a glycoprotein; however, the glycosylation of recombinant protein was not observed. The results of an Enzyme-linked immunosorbent assay (ELISA) showed that recombinant capsid proteins could be utilized as antigens for fast, large-scale diagnosis of PCV2-infected pigs. Our results suggest that the fusion expression of partial polyhedrin is able to increase the production of recombinant PCV2 capsid protein in insect cells.

Optimization of recombinant E. coli fermentation through biological manipulation and engineering control

  • Kim, Jeong-Yoon
    • The Microorganisms and Industry
    • /
    • v.19 no.4
    • /
    • pp.14-26
    • /
    • 1993
  • Optimizing protein production in recombinant E. coli strains involves manipulation of genetic and environmental factors. In designing a production system, attention must be paid to gene expression efficiency, culture conditions and bioreactor configuration. Although not much emphasis was given to the physiology of host strains in this review, an understanding of the relationship between the physiology of host cell growth and the overproduction of a cloned gene protein is of primary importance to the improvement of the recombinant fermentation processes. Sometimes it is desirable to make use of gene fusion systems, e.g. protein A, polypeptide, gutathione-S-transferase, or pneumococcal murein hydrolase fusion, to facilitate protein purification.

  • PDF

Production of Toxin Protein by Recombinant Escherichia coli with a Thermally Inducible Expression System

  • Jong, Se-Han;Chang, Ho-Nam;Chang, Yong-Keun;Rhim, Seong-Lyul
    • Journal of Microbiology and Biotechnology
    • /
    • v.6 no.6
    • /
    • pp.451-455
    • /
    • 1996
  • Physiological studies on the expression of Bacillus thuringiensis subsp. tenebrionis (Btt) gene coding for insecticidal protein in recombinant Escherichia coli 537 were carried out to identify optimal culture condition. It was necessary to shift culture temperature from 30 to $42^{\circ}C$ to express the gene. Expression of the Btt toxin gene by recombinant E. coli 537 began within one hour after induction. Complex nitrogen sources increased production of the insecticidal protein. The total insecticidal protein was 0.5 g/I when using yeast extract as a complex nitrogen source. Soybean hydrolysate showed apparently the highest induction efficiency. After induction, the cellular content of the insecticidal protein was 5.4 times higher than it had been before induction. The optimal cultivation strategy was found to grow cells for 7hours at $30^{\circ}C$ and then 5-8 hours at $42^{\circ}C$. The optimal cultivation pH for the production of insecticidal protein was 6.5. The Btt toxin produced by the recombinant E. coli 537 was found to have the same level of potency against Colorado potato beetle as the original toxin.

  • PDF

Identification of HUGT1 as a Potential BiP Activator and a Cellular Target for Improvement of Recombinant Protein Production Using a cDNA Screening System

  • Ku, Sebastian Chih Yuan;Lwa, Teng Rhui;Giam, Maybelline;Yap, Miranda Gek Sim;Chao, Sheng-Hao
    • Molecules and Cells
    • /
    • v.27 no.5
    • /
    • pp.577-582
    • /
    • 2009
  • The development of a high-throughput functional genomic screening provides a novel and expeditious approach in identifying critical genes involved in specific biological processes. Here we describe a cell-based cDNA screening system to identify the transcription activators of BiP, an endoplasmic reticulum (ER) chaperone protein. BiP promoter contains the ER stress element which is commonly present in the genes involved in unfolded protein response (UPR) that regulates protein secretion in cells. Therefore, the positive regulators of BiP may also be utilized to improve the recombinant protein production through modulation of UPR. Four BiP activators, including human UDP-glucose:glycoprotein glucosyltransferase 1 (HUGT1), are identified by the cDNA screening. Overexpression of HUGT1 leads to a significant increase in the production of recombinant erythropoietin, interferon ${\gamma}$, and monoclonal antibody in HEK293 cells. Our results demonstrate that the cDNA screening for BiP activators may be effective to identify the novel BiP regulators and HUGT1 may serve as an ideal target gene for improving the recombinant protein production in mammalian cells.

hGM-CSF Production from Transgenic Nicotiana tabacum (형질 전환된 담배 세포에서 hGM-CSF 생산 연구)

  • 변한열;변상요
    • KSBB Journal
    • /
    • v.18 no.6
    • /
    • pp.435-439
    • /
    • 2003
  • Plant cell culture can be divide into two classes non-organic culture and organic culture. Non-organic culture such as suspension culture has many researches, however organic culture about recombinant protein production has little researches. Recombinant protein produced through organ culture is quite stable and it can make proteins by itself without any grow regulators. Therefore organ culture is much easier than other methods. In this research, we used transformed tobacco seed. At first we germinated the seed then separated stems and leaves from the grown plant. And raised in liquid medium by in vitro vegetative reproduction. Continuing most suitable conditions, we compared the Quantities of recombinant protein from intra cellular with from extra cellular. And adding some permeabilizing agents (Pluronic F-68, Triton X-100, DMSO, PEG8000), we increased the productivity of the recombinant protein.

A study on the effect of CspA expression on the productivity of recombinant protein at low temperature (CspA의 발현이 저온에서의 재조합 단백질 생산성에 미치는 영향에 관한 연구)

  • Kim, Su-Hyun;Heo, Mi-Ae;Lee, Sun-Gu
    • KSBB Journal
    • /
    • v.24 no.1
    • /
    • pp.96-100
    • /
    • 2009
  • One of the major drawbacks associated with the high-level expression of the recombinant proteins in Escherichia coli is the formation of insoluble inclusion bodies in the cytoplasm. Production of recombinant protein at reduced temperature has proven effective in improving the solubility of a number of structurally and functionally unrelated proteins, but a major limitation of using low temperatures for recombinant protein production in E. coli is the reduced rate of synthesis of the heterologous protein caused by the significant reduction of cell growth rate. Here we investigated the effect of co-expression of CspA, a cold-shock protein known to be RNA chaperone at low temperature, on the productivity of recombinant protein at various temperatures by using green fluorescence protein (GFP) as a model recombinant protein. We could observe that the co-expression of CspA enhanced the productivity of GFP at $15^{\circ}C$ by accelerating the growth of E. coli at the temperature. On the other hand, the CspA coexpression didn't affect the cell growth rate as well as the specific GFP production rate at other tested temperatures, $20^{\circ}C$, $25^{\circ}C$, and $37^{\circ}C$.