본 연구의 목적은 중국 사용자들을 대상으로 온라인 지식 콘텐츠의 구매의도에 영향을 미치는 요인을 살펴보기 위함이다. 연구모형은 선행연구를 통해서 온라인 지식 콘텐츠 특성, 저작권 및 유료화 인식, 계획된 행동이론 변인, 구매의도 변수를 제시하였다. 설문조사를 통해서 최종 457부를 수집하였으며 SPSS 25.0과 AMOS 23.0을 이용하여 제시한 연구가설을 검증하였다. 연구결과에 의하면 온라인 지식 콘텐츠 특성은 태도에 부분적으로 영향을 미치는 것으로 나타났다. 또한, 유료화 인식과 계획된 행동이론 변인들은 구매의도에 긍정적인 영향을 있는 것으로 나타났다. 그리고, 이러한 연구결과를 활용한 온라인 지식 콘텐츠의 구매의도를 제고하는데 도움이 되는 방안을 제시하였으며, 실무적인 측면에서 유료 지식 콘텐츠의 운영 기업에 대한 시사점을 제시하였다. 또한, 향후 각종 콘텐츠 유료화 관련 후속 연구를 위한 토대를 제공할 것으로 사료된다.
Various government-based consulting techniques are being adapted to increase competitive power and to achieve management innovation of Korean farms. These business consulting services are offered by free or paid consulting. This study focuses on what socio-economic characteristics are affecting farmers' intension of adapting consulting services, based on 169 surveyed data from Chunchungnam-do. Logit Model is used to identify the relationship between the probability of consulting intent and factors representing farm characteristics. The model was applied on each of free and paid consulting. According to the results, degree of consulting recognition, age, education, raised crop are significant factors affecting farmers' intension of adapting consulting service in the case of free consulting at 10% of significance level. In the case of paid consulting, level of farming, age, income, insufficiency of farming, and education were identified as significant factors. In terms of elasticity of each variable, most variables for free consulting service are inelastic to consulting intent, whereas age, level of farming, and education are elastic for paid consulting service. Overall results implies that more public relations are required to activate free consulting services for the farms with moderate level of farming. In the case of paid consulting, it is effective to adapt consulting services for younger farms with higher level of farming and education.
Research efforts have been made for out-of-vocabulary word rejection to improve the confidence of speech recognition systems. However, little attention has been paid to non-recognition sentence rejection. According to the appearance of pronunciation correction systems using speech recognition technology, it is needed to reject non-recognition sentences to provide users with more accurate and robust results. In this paper, we introduce standard phoneme based sentence rejection system with no need of special filler models. Instead we used word spotting ratio to determine whether input sentences would be accepted or rejected. Experimental results show that we can achieve comparable performance using only standard phoneme based recognition network in terms of the average of FRR and FAR.
전자문서에서 개인정보를 보호하기 위한 방법으로 서식 인식과 광학 문자 인식 기법이 많이 이용되고 있으나 OCR 엔진의 저조한 인식률로 인해서 개인정보를 탐지하지 못하거나 오탐이 많이 발생하고 있고 또한 대량의 전자문서를 분석하는데도 오랜 시간이 걸린다. 본 논문에서는 기존의 방법을 개선하여 전자문서의 이미지 분석 속도와 OCR엔진의 글자 인식률, 그리고 개인정보의 탐지율을 향상할 수 있는 방안을 제시한다. 서식 인식 방법을 이용하여 분석 속도를 높이고, 이미지 보정을 통해 OCR 엔진 분석 속도 및 글자 인식률을 향상한다. 이미지에서의 개인정보 분석 알고리즘을 제안하여 개인정보의 탐지율을 높였다. 실험을 통하여 이미지 서식 인식 시료 1755개를 분석하여 평균 0.24초가 소요되어 기존의 PAID 시스템 서식 인식 방안보다 0.5초 향상되었으며 이미지 서식 인식률은 평균 99%를 기록하였다. 본 논문에서 제안한 방법은 전자문서에서 개인정보를 보호할 수 있는 시스템으로서 공공, 통신사, 금융, 관광, 보안 등 여러분야에서 활용할 수 있을 것이다.
KSII Transactions on Internet and Information Systems (TIIS)
/
제7권11호
/
pp.2824-2838
/
2013
There has been a lot of attention paid recently to analyze dynamic human gestures that vary over time. Most attention to dynamic gestures concerns with spatio-temporal features, as compared to analyzing each frame of gestures separately. For accurate dynamic gesture recognition, motion feature extraction algorithms need to find representative features that uniquely identify time-varying gestures. This paper proposes a new feature-extraction algorithm using temporal self-similarity based on a hierarchical human model. Because a conventional temporal self-similarity method computes a whole movement among the continuous frames, the conventional temporal self-similarity method cannot recognize different gestures with the same amount of movement. The proposed model-based temporal self-similarity method groups body parts of a hierarchical model into several sets and calculates movements for each set. While recognition results can depend on how the sets are made, the best way to find optimal sets is to separate frequently used body parts from less-used body parts. Then, we apply a multiclass support vector machine whose optimization algorithm is based on structural support vector machines. In this paper, the effectiveness of the proposed feature extraction algorithm is demonstrated in an application for taebo gesture recognition. We show that the model-based temporal self-similarity method can overcome the shortcomings of the conventional temporal self-similarity method and the recognition results of the model-based method are superior to that of the conventional method.
Recently, Computer Assisted Language Learning (CALL) received widely held attention from diverse audiences. However, to the author's knowledge, relatively little attention was paid to the educational implications of voice recognition (VR) softwares in language teaching in general, and teaching and learning pronunciation in particular. This study explores, and extends the applicability of VR softwares toward second language research areas addressing how VR softwares might facilitate interview data entering processes. To aid the readers' understanding in this field, the background of classroom interaction research, and the rationale of why interview data, therefore the role of VR softwares, becomes critical in this realm of inquiry will be discussed. VR softwares' development and a brief report on the features of up-to-date VR softwares will be sketched. Finally, suggestions for future studies investigating the impact of VR softwares on second language learning, teaching, and research will be offered.
Nowadays, activity recognition becomes a hot topic in context-aware computing. In activity recognition, machine learning techniques have been widely applied to learn the activity models from labeled activity samples. Most of the existing work uses only one learning method for activity learning and is focused on how to effectively utilize the labeled samples by refining the learning method. However, not much attention has been paid to the use of multiple classifiers for boosting the learning performance. In this paper, we use two methods to generate multiple classifiers. In the first method, the basic learning algorithms for each classifier are the same, while the training data is different (ASTD). In the second method, the basic learning algorithms for each classifier are different, while the training data is the same (ADTS). Experimental results indicate that ADTS can effectively improve activity recognition performance, while ASTD cannot achieve any improvement of the performance. We believe that the classifiers in ADTS are more diverse than those in ASTD.
For speech recognition systems, rejection function as well as decoding function is necessary to improve the reliability. There have been many research efforts on out-of-vocabulary word rejection, however, little attention has been paid on non-target sentence rejection. Recently pronunciation approaches using speech recognition increase the need for non-target sentence rejection to provide more accurate and robust results. In this paper, we proposed filler model method and word/phoneme detection ratio method to implement non-target sentence rejection system. We made performance evaluation of filler model along to word-level, phoneme-level, and sentence-level filler models respectively. We also perform the similar experiment using word-level and phoneme-level word/phoneme detection ratio method. For the performance evaluation, the minimized average of FAR and FRR is used for comparing the effectiveness of each method along with the number of words of given sentences. From the experimental results, we got to know that word-level method outperforms the other methods, and word-level filler mode shows slightly better results than that of word detection ratio method.
소셜미디어 상에서 보다 효과적인 건강정보 전달을 위해 시각정보가 많이 사용되고 있다. 그러나 시각정보가 사용된 소셜미디어상의 건강정보를 이용자들이 어떻게 읽고, 시각정보가 어느 정도 효과적인 정보전달을 하는가에 대한 연구는 미흡한 상황이다. 이에 본 연구는 페이스북 상의 건강정보를 담은 게시물을 사용하여 이용자들의 게시물 시선주시 패턴과 회상 및 인지테스트 결과를 보고하였다. 21명의 대학생들을 대상으로 하여, 온라인 설문지, 시선추적실험, 회상과 인식 테스트를 수행하였다. 그 결과, 첫째, 이용자들은 정보를 포함하고 있는 영역에 주의를 집중하는 것으로 밝혀졌다. 정보를 포함하지 않고 있는 사진보다는 본문의 내용에 이용자들은 먼저 시선집중하는 것으로 나타났다. 둘째, 인포그래픽을 포함한 게시물의 경우 이용자들이 인포그래픽에 주의를 집중하지만, 회상과 인식 테스트 결과는 사진을 포함한 게시물보다 낮게 나타났다. 특히 콜라주 형식의 복잡한 인포그래픽을 포함한 게시물의 회상과 인식 테스트 결과가 낮은 것으로 나타났다. 셋째, 본문 길이를 살펴보면, 본문의 길이가 짧은 게시물의 회상과 인식테스트 결과가 높은 것으로 나타났다. 본 연구의 의의는 페이스북 건강정보 제공자 및 배포자에게 페이스북 게시물 디자인 시 고려사항에 대해 제안점을 제시한 점을 들 수 있다.
Ultrasonic sensors are becoming indispensable components in every sector of automation equipments due to many advantages. But the main purposes of the noncontact sensing device are rather narrowly confined within object detection and distance measurement. To widen the realm of the applications to object recognition, ultrasonic sensors need to improve the recognition resolution to a certain amount. To resolve the problem of spatial resolution restriction, an increased number of the sensors in the forms of a linear array or 2-dimensional array of the sensor has been used. Also better resolution has been obtained by shifting the array in several steps using mechanical actuators. For an object recognition using ultrasonic sensors, measurements of distance, shift, oblique angle in certain ranges should be obtained. But a little attention has been paid to the measurement of angles. In this paper we propose a practical method for an object angular value detection in addition to distance measurement in ultrasonic sensor array system with little additional hardware burden. Using the established measurement look-up table for the variations of distance, shift, angle and transmitter voltages for each sensor characteristics, a set of different return echo signals for adjacent receivers are processed to provide enhanced angular value reading for an object.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.