• Title/Summary/Keyword: Recognition and Detection

Search Result 2,261, Processing Time 0.03 seconds

Using a Multi-Faced Technique SPFACS Video Object Design Analysis of The AAM Algorithm Applies Smile Detection (다면기법 SPFACS 영상객체를 이용한 AAM 알고리즘 적용 미소검출 설계 분석)

  • Choi, Byungkwan
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.11 no.3
    • /
    • pp.99-112
    • /
    • 2015
  • Digital imaging technology has advanced beyond the limits of the multimedia industry IT convergence, and to develop a complex industry, particularly in the field of object recognition, face smart-phones associated with various Application technology are being actively researched. Recently, face recognition technology is evolving into an intelligent object recognition through image recognition technology, detection technology, the detection object recognition through image recognition processing techniques applied technology is applied to the IP camera through the 3D image object recognition technology Face Recognition been actively studied. In this paper, we first look at the essential human factor, technical factors and trends about the technology of the human object recognition based SPFACS(Smile Progress Facial Action Coding System)study measures the smile detection technology recognizes multi-faceted object recognition. Study Method: 1)Human cognitive skills necessary to analyze the 3D object imaging system was designed. 2)3D object recognition, face detection parameter identification and optimal measurement method using the AAM algorithm inside the proposals and 3)Face recognition objects (Face recognition Technology) to apply the result to the recognition of the person's teeth area detecting expression recognition demonstrated by the effect of extracting the feature points.

A Study on Endpoint Detection and Syllable Segmentation System Using Ramp Edge Detection (Ramp Edge Detection을 이용한 끝점 검출과 음절 분할에 관한 연구)

  • 유일수;홍광석
    • Proceedings of the IEEK Conference
    • /
    • 2003.07e
    • /
    • pp.2216-2219
    • /
    • 2003
  • Accurate speech region detection and automatic syllable segmentation is important part of speech recognition system. In automatic speech recognition system, they are needed for the purpose of accurate recognition and less computational complexity, In this paper, we Propose improved syllable segmentation method using ramp edge detection method and residual signal Peak energy. These methods were used to ensure accuracy and robustness for endpoint detection and syllable segmentation system. They have almost invariant response to various background noise levels. As experimental results, we obtained the rate of 90.7% accuracy in syllable segmentation in a condition of accurate endpoint detection environments.

  • PDF

Robust Speech Detection Based on Useful Bands for Continuous Digit Speech over Telephone Networks

  • Ji, Mi-Kyongi;Suh, Young-Joo;Kim, Hoi-Rin;Kim, Sang-Hun
    • The Journal of the Acoustical Society of Korea
    • /
    • v.22 no.3E
    • /
    • pp.113-123
    • /
    • 2003
  • One of the most important problems in speech recognition is to detect the presence of speech in adverse environments. In other words, the accurate detection of speech boundary is critical to the performance of speech recognition. Furthermore the speech detection problem becomes severer when recognition systems are used over the telephone network, especially wireless network and noisy environment. Therefore this paper describes various speech detection algorithms for continuous digit recognition system used over wire/wireless telephone networks and we propose a algorithm in order to improve the robustness of speech detection using useful band selection under noisy telephone networks. In this paper, we compare some speech detection algorithms with the proposed one, and present experimental results done with various SNRs. The results show that the new algorithm outperforms the other speech detection methods.

Temporal matching prior network for vehicle license plate detection and recognition in videos

  • Yoo, Seok Bong;Han, Mikyong
    • ETRI Journal
    • /
    • v.42 no.3
    • /
    • pp.411-419
    • /
    • 2020
  • In real-world intelligent transportation systems, accuracy in vehicle license plate detection and recognition is considered quite critical. Many algorithms have been proposed for still images, but their accuracy on actual videos is not satisfactory. This stems from several problematic conditions in videos, such as vehicle motion blur, variety in viewpoints, outliers, and the lack of publicly available video datasets. In this study, we focus on these challenges and propose a license plate detection and recognition scheme for videos based on a temporal matching prior network. Specifically, to improve the robustness of detection and recognition accuracy in the presence of motion blur and outliers, forward and bidirectional matching priors between consecutive frames are properly combined with layer structures specifically designed for plate detection. We also built our own video dataset for the deep training of the proposed network. During network training, we perform data augmentation based on image rotation to increase robustness regarding the various viewpoints in videos.

Semi-Supervised Learning Based Anomaly Detection for License Plate OCR in Real Time Video

  • Kim, Bada;Heo, Junyoung
    • International journal of advanced smart convergence
    • /
    • v.9 no.1
    • /
    • pp.113-120
    • /
    • 2020
  • Recently, the license plate OCR system has been commercialized in a variety of fields and preferred utilizing low-cost embedded systems using only cameras. This system has a high recognition rate of about 98% or more for the environments such as parking lots where non-vehicle is restricted; however, the environments where non-vehicle objects are not restricted, the recognition rate is about 50% to 70%. This low performance is due to the changes in the environment by non-vehicle objects in real-time situations that occur anomaly data which is similar to the license plates. In this paper, we implement the appropriate anomaly detection based on semi-supervised learning for the license plate OCR system in the real-time environment where the appearance of non-vehicle objects is not restricted. In the experiment, we compare systems which anomaly detection is not implemented in the preceding research with the proposed system in this paper. As a result, the systems which anomaly detection is not implemented had a recognition rate of 77%; however, the systems with the semi-supervised learning based on anomaly detection had 88% of recognition rate. Using the techniques of anomaly detection based on the semi-supervised learning was effective in detecting anomaly data and it was helpful to improve the recognition rate of real-time situations.

A Modified Viterbi Algorithm for Word Boundary Detection Error Compensation (단어 경계 검출 오류 보정을 위한 수정된 비터비 알고리즘)

  • Chung, Hoon;Chung, Ik-Joo
    • The Journal of the Acoustical Society of Korea
    • /
    • v.26 no.1E
    • /
    • pp.21-26
    • /
    • 2007
  • In this paper, we propose a modified Viterbi algorithm to compensate for endpoint detection error during the decoding phase of an isolated word recognition task. Since the conventional Viterbi algorithm explores only the search space whose boundaries are fixed to the endpoints of the segmented utterance by the endpoint detector, the recognition performance is highly dependent on the accuracy level of endpoint detection. Inaccurately segmented word boundaries lead directly to recognition error. In order to relax the degradation of recognition accuracy due to endpoint detection error, we describe an unconstrained search of word boundaries and present an algorithm to explore the search space with efficiency. The proposed algorithm was evaluated by performing a variety of simulated endpoint detection error cases on an isolated word recognition task. The proposed algorithm reduced the Word Error Rate (WER) considerably, from 84.4% to 10.6%, while consuming only a little more computation power.

Real time detection and recognition of traffic lights using component subtraction and detection masks (성분차 색분할과 검출마스크를 통한 실시간 교통신호등 검출과 인식)

  • Jeong Jun-Ik;Rho Do-Whan
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.43 no.2 s.308
    • /
    • pp.65-72
    • /
    • 2006
  • The traffic lights detection and recognition system is an essential module of the driver warning and assistance system. A method which is a color vision-based real time detection and recognition of traffic lights is presented in this paper This method has four main modules : traffic signals lights detection module, traffic lights boundary candidate determination module, boundary detection module and recognition module. In traffic signals lights detection module and boundary detection module, the color thresholding and the subtraction value of saturation and intensity in HSI color space and detection probability mask for lights detection are used to segment the image. In traffic lights boundary candidate determination module, the detection mask of traffic lights boundary is proposed. For the recognition module, the AND operator is applied to the results of two detection modules. The input data for this method is the color image sequence taken from a moving vehicle by a color video camera. The recorded image data was transformed by zooming function of the camera. And traffic lights detection and recognition experimental results was presented in this zoomed image sequence.

Improved Two-Phase Framework for Facial Emotion Recognition

  • Yoon, Hyunjin;Park, Sangwook;Lee, Yongkwi;Han, Mikyong;Jang, Jong-Hyun
    • ETRI Journal
    • /
    • v.37 no.6
    • /
    • pp.1199-1210
    • /
    • 2015
  • Automatic emotion recognition based on facial cues, such as facial action units (AUs), has received huge attention in the last decade due to its wide variety of applications. Current computer-based automated two-phase facial emotion recognition procedures first detect AUs from input images and then infer target emotions from the detected AUs. However, more robust AU detection and AU-to-emotion mapping methods are required to deal with the error accumulation problem inherent in the multiphase scheme. Motivated by our key observation that a single AU detector does not perform equally well for all AUs, we propose a novel two-phase facial emotion recognition framework, where the presence of AUs is detected by group decisions of multiple AU detectors and a target emotion is inferred from the combined AU detection decisions. Our emotion recognition framework consists of three major components - multiple AU detection, AU detection fusion, and AU-to-emotion mapping. The experimental results on two real-world face databases demonstrate an improved performance over the previous two-phase method using a single AU detector in terms of both AU detection accuracy and correct emotion recognition rate.

A New Islanding Detection Method Based on Feature Recognition Technology

  • Zheng, Xinxin;Xiao, Lan;Qin, Wenwen;Zhang, Qing
    • Journal of Power Electronics
    • /
    • v.16 no.2
    • /
    • pp.760-768
    • /
    • 2016
  • Three-phase grid-connected inverters are widely applied in the fields of new energy power generation, electric vehicles and so on. Islanding detection is necessary to ensure the stability and safety of such systems. In this paper, feature recognition technology is applied and a novel islanding detection method is proposed. It can identify the features of inverter systems. The theoretical values of these features are defined as codebooks. The difference between the actual value of a feature and the codebook is defined as the quantizing distortion. When islanding happens, the sum of the quantizing distortions exceeds the threshold value. Thus, islanding can be detected. The non-detection zone can be avoided by choosing reasonable features. To accelerate the speed of detection and to avoid miscalculation, an active islanding detection method based on feature recognition technology is given. Compared to the active frequency or phase drift methods, the proposed active method can reduce the distortion of grid-current when the inverter works normally. The principles of the islanding detection method based on the feature recognition technology and the improved active method are both analyzed in detail. An 18 kVA DSP-based three-phase inverter with the SVPWM control strategy has been established and tested. Simulation and experimental results verify the theoretical analysis.

Detection of Low-Level Human Action Change for Reducing Repetitive Tasks in Human Action Recognition (사람 행동 인식에서 반복 감소를 위한 저수준 사람 행동 변화 감지 방법)

  • Noh, Yohwan;Kim, Min-Jung;Lee, DoHoon
    • Journal of Korea Multimedia Society
    • /
    • v.22 no.4
    • /
    • pp.432-442
    • /
    • 2019
  • Most current human action recognition methods based on deep learning methods. It is required, however, a very high computational cost. In this paper, we propose an action change detection method to reduce repetitive human action recognition tasks. In reality, simple actions are often repeated and it is time consuming process to apply high cost action recognition methods on repeated actions. The proposed method decides whether action has changed. The action recognition is executed only when it has detected action change. The action change detection process is as follows. First, extract the number of non-zero pixel from motion history image and generate one-dimensional time-series data. Second, detecting action change by comparison of difference between current time trend and local extremum of time-series data and threshold. Experiments on the proposed method achieved 89% balanced accuracy on action change data and 61% reduced action recognition repetition.