• Title/Summary/Keyword: Recognition System

Search Result 6,998, Processing Time 0.032 seconds

Robust Sign Recognition System at Subway Stations Using Verification Knowledge

  • Lee, Dongjin;Yoon, Hosub;Chung, Myung-Ae;Kim, Jaehong
    • ETRI Journal
    • /
    • v.36 no.5
    • /
    • pp.696-703
    • /
    • 2014
  • In this paper, we present a walking guidance system for the visually impaired for use at subway stations. This system, which is based on environmental knowledge, automatically detects and recognizes both exit numbers and arrow signs from natural outdoor scenes. The visually impaired can, therefore, utilize the system to find their own way (for example, using exit numbers and the directions provided) through a subway station. The proposed walking guidance system consists mainly of three stages: (a) sign detection using the MCT-based AdaBoost technique, (b) sign recognition using support vector machines and hidden Markov models, and (c) three verification techniques to discriminate between signs and non-signs. The experimental results indicate that our sign recognition system has a high performance with a detection rate of 98%, a recognition rate of 99.5%, and a false-positive error rate of 0.152.

A Study on the Artificial Recognition System on Visual Environment of Architecture (건축의 시각적 환경에 대한 지능형 인지 시스템에 관한 연구)

  • Seo, Dong-Yeon;Lee, Hyun-Soo
    • KIEAE Journal
    • /
    • v.3 no.2
    • /
    • pp.25-32
    • /
    • 2003
  • This study deals with the investigation of recognition structure on architectural environment and reconstruction of it by artificial intelligence. To test the possibility of the reconstruction, recognition structure on architectural environment is analysed and each steps of the structure are matched with computational methods. Edge Detection and Neural Network were selected as matching methods to each steps of recognition process. Visual perception system established by selected methods is trained and tested, and the result of the system is compared with that of experiment of human. Assuming that the artificial system resembles the process of human recognition on architectural environment, does the system give similar response of human? The result shows that it is possible to establish artificial visual perception system giving similar response with that of human when it models after the recognition structure and process of human.

A Study on Vocabulary-Independent Continuous Speech Recognition System for Intelligent Home Network System (지능형 홈네트워크 시스템을 위한 가변어휘 연속음성인식시스템에 관한 연구)

  • Lee, Ho-Woong;Jeong, Hee-Suk
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.7 no.2
    • /
    • pp.37-42
    • /
    • 2008
  • In this paper, the vocabulary-independent continuous speech recognition system for speech control of intelligent home-network is presented. This study suggests a conversational scenario of continuous natural vocabulary based upon keywords for recognition on natural speech command, and a way of optimizing the recognition system by constructing a recognition system and database based upon keywords.

  • PDF

Implementation of Non-Contact Gesture Recognition System Using Proximity-based Sensors

  • Lee, Kwangjae
    • Journal of the Semiconductor & Display Technology
    • /
    • v.19 no.3
    • /
    • pp.106-111
    • /
    • 2020
  • In this paper, we propose the non-contact gesture recognition system and algorithm using proximity-based sensors. The system uses four IR receiving photodiode embedded on a single chip and an IR LED for small area. The goal of this paper is to use the proposed algorithm to solve the problem associated with bringing the four IR receivers close to each other and to implement a gesture sensor capable of recognizing eight directional gestures from a distance of 10cm and above. The proposed system was implemented on a FPGA board using Verilog HDL with Android host board. As a result of the implementation, a 2-D swipe gesture of fingers and palms of 3cm and 15cm width was recognized, and a recognition rate of more than 97% was achieved under various conditions. The proposed system is a low-power and non-contact HMI system that recognizes a simple but accurate motion. It can be used as an auxiliary interface to use simple functions such as calls, music, and games for portable devices using batteries.

A Study on Korean Allophone Recognition Using Hierarchical Time-Delay Neural Network (계층구조 시간지연 신경망을 이용한 한국어 변이음 인식에 관한 연구)

  • 김수일;임해창
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.32B no.1
    • /
    • pp.171-179
    • /
    • 1995
  • In many continuous speech recognition systems, phoneme is used as a basic recognition unit However, the coarticulation generated among neighboring phonemes makes difficult to recognize phonemes consistently. This paper proposes allophone as an alternative recognition unit. We have classified each phoneme into three different allophone groups by the location of phoneme within a syllable. For a recognition algorithm, time-delay neural network(TDNN) has been designed. To recognize all Korean allophones, TDNNs are constructed in modular fashion according to acoustic-phonetic features (e.g. voiced/unvoiced, the location of phoneme within a word). Each TDNN is trained independently, and then they are integrated hierarchically into a whole speech recognition system. In this study, we have experimented Korean plosives with phoneme-based recognition system and allophone-based recognition system. Experimental results show that allophone-based recognition is much less affected by the coarticulation.

  • PDF

Comparisons of Object Recognition Performance with 3D Photon Counting & Gray Scale Images

  • Lee, Chung-Ghiu;Moon, In-Kyu
    • Journal of the Optical Society of Korea
    • /
    • v.14 no.4
    • /
    • pp.388-394
    • /
    • 2010
  • In this paper the object recognition performance of a photon counting integral imaging system is quantitatively compared with that of a conventional gray scale imaging system. For 3D imaging of objects with a small number of photons, the elemental image set of a 3D scene is obtained using the integral imaging set up. We assume that the elemental image detection follows a Poisson distribution. Computational geometrical ray back propagation algorithm and parametric maximum likelihood estimator are applied to the photon counting elemental image set in order to reconstruct the original 3D scene. To evaluate the photon counting object recognition performance, the normalized correlation peaks between the reconstructed 3D scenes are calculated for the varied and fixed total number of photons in the reconstructed sectional image changing the total number of image channels in the integral imaging system. It is quantitatively illustrated that the recognition performance of the photon counting integral imaging system can be similar to that of a conventional gray scale imaging system as the number of image viewing channels in the photon counting integral imaging (PCII) system is increased up to the threshold point. Also, we present experiments to find the threshold point on the total number of image channels in the PCII system which can guarantee a comparable recognition performance with a gray scale imaging system. To the best of our knowledge, this is the first report on comparisons of object recognition performance with 3D photon counting & gray scale images.

The Vocabulary Recognition Optimize using Acoustic and Lexical Search (음향학적 및 언어적 탐색을 이용한 어휘 인식 최적화)

  • Ahn, Chan-Shik;Oh, Sang-Yeob
    • Journal of Korea Multimedia Society
    • /
    • v.13 no.4
    • /
    • pp.496-503
    • /
    • 2010
  • Speech recognition system is developed of standalone, In case of a mobile terminal using that low recognition rate represent because of limitation of memory size and audio compression. This study suggest vocabulary recognition highest performance improvement system for separate acoustic search and lexical search. Acoustic search is carry out in mobile terminal, lexical search is carry out in server processing system. feature vector of speech signal extract using GMM a phoneme execution, recognition a phoneme list transmission server using Lexical Tree Search algorithm lexical search recognition execution. System performance as a result of represent vocabulary dependence recognition rate of 98.01%, vocabulary independence recognition rate of 97.71%, represent recognition speed of 1.58 second.

Speaker Adaptation Using Linear Transformation Network in Speech Recognition (선형 변환망을 이용한 화자적응 음성인식)

  • 이기희
    • Journal of the Korea Society of Computer and Information
    • /
    • v.5 no.2
    • /
    • pp.90-97
    • /
    • 2000
  • This paper describes an speaker-adaptive speech recognition system which make a reliable recognition of speech signal for new speakers. In the Proposed method, an speech spectrum of new speaker is adapted to the reference speech spectrum by using Parameters of a 1st linear transformation network at the front of phoneme classification neural network. And the recognition system is based on semicontinuous HMM(hidden markov model) which use the multilayer perceptron as a fuzzy vector quantizer. The experiments on the isolated word recognition are performed to show the recognition rate of the recognition system. In the case of speaker adaptation recognition, the recognition rate show significant improvement for the unadapted recognition system.

  • PDF

Design and Implementation of Personal Information Identification and Masking System Based on Image Recognition (이미지 인식 기반 향상된 개인정보 식별 및 마스킹 시스템 설계 및 구현)

  • Park, Seok-Cheon
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.17 no.5
    • /
    • pp.1-8
    • /
    • 2017
  • Recently, with the development of ICT technology such as cloud and mobile, image utilization through social networks is increasing rapidly. These images contain personal information, and personal information leakage accidents may occur. As a result, studies are underway to recognize and mask personal information in images. However, optical character recognition, which recognizes personal information in images, varies greatly depending on brightness, contrast, and distortion, and Korean recognition is insufficient. Therefore, in this paper, we design and implement a personal information identification and masking system based on image recognition through deep learning application using CNN algorithm based on optical character recognition method. Also, the proposed system and optical character recognition compares and evaluates the recognition rate of personal information on the same image and measures the face recognition rate of the proposed system. Test results show that the recognition rate of personal information in the proposed system is 32.7% higher than that of optical character recognition and the face recognition rate is 86.6%.

The Study on Korean Phoneme for Korean Speech Recogintion

  • Hwang, Young-Soo
    • Proceedings of the IEEK Conference
    • /
    • 2000.07b
    • /
    • pp.629-632
    • /
    • 2000
  • In this paper, we studied on the phoneme classification for Korean speech recognition. In the case of making large vocabulary speech recognition system, it is better to use phoneme than syllable or word as recognition unit. And, In order to study the difference of speech recognition according to the number of phoneme as recognition unit, we used the speech toolkit of OGI in U.S.A as recognition system. The result showed that the performance of diphthong being unified was better than that of seperated diphthongs, and we required the better result when we used the biphone than when using mono-phone as recognition unit.

  • PDF