Journal of the Korea Society of Computer and Information
/
v.17
no.1
/
pp.125-132
/
2012
In this paper, We proposes FE-SM/SONN for recognizing blurred and smeared skid mark image caused by sudden braking of a vehicle. In a blurred and smeared skid marks, tread pattern image is ambiguous. To improve recognition of such image, FE-SM/SONN reads skid marks utilizing Fuzzy Logic and distinguishing tread pattern SONN(Self Organization Neural Networks) recognizer. In order to substantiate this finding, 48 tire models and 144 skid marks were compared and overall recognition ratio was 89%. This study showed 13.51% improved recognition compared to existing back propagation recognizer, and 8.78% improvement than FE-MCBP. The expected effect of this research is achieving recognition of ambiguous images by extracting distinguishing features, and the finding concludes that even when tread pattern image is in grey scale, Fuzzy Logic enables the tread pattern recognizable.
The Journal of The Korea Institute of Intelligent Transport Systems
/
v.6
no.3
/
pp.77-86
/
2007
Recently, systems based on speech recognition interface such as telematics terminals are being developed. However, many errors still exist in speech recognition and then studies about error correction are actively conducting. This paper proposes an error correction in post-processing of the speech recognition based on features of Korean phoneme. To support this algorithm, we used the phoneme similarity considering features of Korean phoneme. The phoneme similarity, which is utilized in this paper, rams data by mono-phoneme, and uses MFCC and LPC to extract feature in each Korean phoneme. In addition, the phoneme similarity uses a Bhattacharrya distance measure to get the similarity between one phoneme and the other. By using the phoneme similarity, the error of eo-jeol that may not be morphologically analyzed could be corrected. Also, the syllable recovery and morphological analysis are performed again. The results of the experiment show the improvement of 7.5% and 5.3% for each of MFCC and LPC.
A hybrid approach using Long Short Term Memory (LSTM) Recurrent Neural Network (RNN) has showed great improvement in speech recognition accuracy. For training acoustic model based on hybrid approach, it requires forced alignment of HMM state sequence from Gaussian Mixture Model (GMM)-Hidden Markov Model (HMM). However, high computation time for training GMM-HMM is required. This paper proposes an end-to-end approach for LSTM RNN-based Korean speech recognition to improve learning speed. A Connectionist Temporal Classification (CTC) algorithm is proposed to implement this approach. The proposed method showed almost equal performance in recognition rate, while the learning speed is 1.27 times faster.
The Journal of Korean Institute of Communications and Information Sciences
/
v.38B
no.12
/
pp.954-961
/
2013
In this paper, we propose a new learning method using a variable learning to improve pattern recognition in the FCSR(Fast Commit Slow Recode) learning method of the Fuzzy ART. Traditional learning methods have used a fixed learning rate in updating weight vector(representative pattern). In the traditional method, the weight vector will be updated with a fixed learning rate regardless of the degree of similarity of the input pattern and the representative pattern in the category. In this case, the updated weight vector is greatly influenced from the input pattern where it is on the boundary of the category. Thus, in noisy environments, this method has a problem in increasing unnecessary categories and reducing pattern recognition capacity. In the proposed method, the lower similarity between the representative pattern and input pattern is, the lower input pattern contributes for updating weight vector. As a result, this results in suppressing the unnecessary category proliferation and improving pattern recognition capacity of the Fuzzy ART in noisy environments.
This paper proposes acoustic model training using self-attention for low-resource speech recognition. In low-resource speech recognition, it is difficult for acoustic model to distinguish certain phones. For example, plosive /d/ and /t/, plosive /g/ and /k/ and affricate /z/ and /ch/. In acoustic model training, the self-attention generates attention weights from the deep neural network model. In this study, these weights handle the similar pronunciation error for low-resource speech recognition. When the proposed method was applied to Time Delay Neural Network-Output gate Projected Gated Recurrent Unit (TNDD-OPGRU)-based acoustic model, the proposed model showed a 5.98 % word error rate. It shows absolute improvement of 0.74 % compared with TDNN-OPGRU model.
Journal of the Korean Institute of Telematics and Electronics S
/
v.36S
no.9
/
pp.103-112
/
1999
In this paper, a speaker-independent isolated world recognition system for a car navigation system is implemented using a general digital signal processor. This paper presents a method combining SNR normalization with RAS as a noise processing method. The semi-continuous hidden markov model is adopted and TMS320C31 is used in implementing the real-time system. Recognition word set is composed of 69 command words for a car navigation system. Experimental results showed that the recognition performance has a maximum of 93.62% in case of a combination of SNR normalization and spectral subtraction, and the performance improvement rate of the system is 3.69%, Presented noise processing method showed good speech recognition performance in 5dB SNR in car environment.
DNN error is small compared to the conventional speech recognition system, DNN is difficult to parallel training, often the amount of calculations, and requires a large amount of data obtained. In this paper, we generate a phoneme unit to estimate the GMM parameters with each phoneme model parameters from the GMM to solve the problem efficiently. And it suggests ways to improve performance through clustering for a specific vocabulary to effectively apply them. To this end, using three types of word speech database was to have a DB build vocabulary model, the noise processing to extract feature with Warner filters were used in the speech recognition experiments. Results using the proposed method showed a 97.9% recognition rate in speech recognition. In this paper, additional studies are needed to improve the problems of improved over fitting.
Journal of the Institute of Electronics Engineers of Korea SP
/
v.42
no.4
s.304
/
pp.59-68
/
2005
This paper proposes a face recognition under varying poses using local area obtained by side-view pose normalization. General normalization methods for face recognition under varying pose have a problem with the information about invisible area of face. Generally this problem is solved by compensation, but there are many cases where the image is distorted or features lost due to compensation .To solve this problem we normalize the face pose in side-view to reduce distortion that happens mainly in areas that have large depth variation. We only use undistorted area, removing the area that has been distorted by normalization. We consider two cases of yaw pose variation and pitch pose variation, and by experiments, we confirm the improvement of recognition performance.
Each Korean digit is composed of only a syllable, so recognizers as well as Korean often have difficulty in recognizing it. When digit strings are pronounced, the original pronunciation of each digit is largely changed due to the co-articulation effect. In addition to these problems, the distortion caused by various channels and noises degrades the recognition performance of Korean connected digit string. This paper dealt with some techniques to improve recognition performance of it, which include defining a set of PLUs by considering phonemic variations in Korean digit and constructing a recognizer to handle speakers various speaking styles. In the speaker-independent connected digit recognition experiments using telephone speech, the proposed techniques with 1-Gaussian/state gave string accuracy of 83.2%, i. e., 7.2% error rate reduction relative to baseline system. With 11-Gaussians/state, we achieved the highest string accuracy of 91.8%, i. e., 4.7% error rate reduction.
Journal of the Korea Institute of Information and Communication Engineering
/
v.19
no.9
/
pp.2129-2137
/
2015
Lots of research and development works have been actively focused on the self-driving vehicles, locally and globally. In order to implement the self-driving vehicles, lots of fundamental core technologies need to be successfully developed and, specially, it is noted that traffic lights detection and recognition system is an essential part of the computer vision technologies in the self-driving vehicles. Up to nowadays, most conventional algorithm for detecting and recognizing traffic lights are mainly based on the color signal analysis, but these approaches have limits on the performance improvements that can be achieved due to the color signal noises and environmental situations. In order to overcome the performance limits, this paper introduces the morphological analysis for the traffic lights recognition. That is, by considering the color component analysis and the shape analysis such as rectangles and circles simultaneously, the efficiency of the traffic lights recognitions can be greatly increased. Through several simulations, it is shown that the proposed method can highly improve the recognition rate as well as the mis-recognition rate.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.