• 제목/요약/키워드: Recognition : Optical flow

검색결과 63건 처리시간 0.022초

손 동작 인식을 위한 Optical Flow Orientation Histogram (Optical Flow Orientation Histogram for Hand Gesture Recognition)

  • ;;오치민;이칠우
    • 한국HCI학회:학술대회논문집
    • /
    • 한국HCI학회 2008년도 학술대회 1부
    • /
    • pp.517-521
    • /
    • 2008
  • Hand motion classification problem is considered as basis for sign or gesture recognition. We promote optical flow as main feature extracted from images sequences to simultaneously segment the motion's area by its magnitude and characterize the motion' s directions by its orientation. We manage the flow orientation histogram as motion descriptor. A motion is encoded by concatenating the flow orientation histogram from several frames. We utilize simple histogram matching to classify the motion sequences. Attempted experiments show the feasibility of our method for hand motion localization and classification.

  • PDF

전방위카메라를 이용한 이동로봇에서의 이동물체 인식 (Recognition of Moving Objects in Mobile Robot with an Omnidirectional Camera)

  • 김종철;김영명
    • 로봇학회논문지
    • /
    • 제3권2호
    • /
    • pp.91-98
    • /
    • 2008
  • This paper describes the recognition method of moving objects in mobile robot with an omnidirectional camera. The moving object is detected using the specific pattern of an optical flow in omnidirectional image. This paper consists of two parts. In the first part, the pattern of an optical flow is investigated in omnidirectional image. The optical flow in omnidirectional image is influenced on the geometry characteristic of an omnidirectional camera. The pattern of an optical flow is theoretically and experimentally investigated. In the second part, the detection of moving objects is presented from the estimated optical flow. The moving object is extracted through the relative evaluation of optical flows which is derived from the pattern of optical flow. In particular, Focus-Of-Expansion (FOE) and Focus-Of-Contraction (FOC) vectors are defined from the estimated optical flow. They are used as reference vectors for the relative evaluation of optical flows. The proposed algorithm is performed in four motions of a mobile robot such as straight forward, left turn, right turn and rotation. Experimental results using real movie show the effectiveness of the proposed method.

  • PDF

FTSnet: 동작 인식을 위한 간단한 합성곱 신경망 (FTSnet: A Simple Convolutional Neural Networks for Action Recognition)

  • 조옥란;이효종
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2021년도 추계학술발표대회
    • /
    • pp.878-879
    • /
    • 2021
  • Most state-of-the-art CNNs for action recognition are based on a two-stream architecture: RGB frames stream represents the appearance and the optical flow stream interprets the motion of action. However, the cost of optical flow computation is very high and then it increases action recognition latency. We introduce a design strategy for action recognition inspired by a two-stream network and teacher-student architecture. There are two sub-networks in our neural networks, the optical flow sub-network as a teacher and the RGB frames sub-network as a student. In the training stage, we distill the feature from the teacher as a baseline to train student sub-network. In the test stage, we only use the student so that the latency reduces without computing optical flow. Our experiments show that its advantages over two-stream architecture in both speed and performance.

동작 인식을 위한 교사-학생 구조 기반 CNN (Teacher-Student Architecture Based CNN for Action Recognition)

  • ;이효종
    • 정보처리학회논문지:컴퓨터 및 통신 시스템
    • /
    • 제11권3호
    • /
    • pp.99-104
    • /
    • 2022
  • 대부분 첨단 동작 인식 컨볼루션 네트워크는 RGB 스트림과 광학 흐름 스트림, 양 스트림 아키텍처를 기반으로 하고 있다. RGB 프레임 스트림은 모양 특성을 나타내고 광학 흐름 스트림은 동작 특성을 해석한다. 그러나 광학 흐름은 계산 비용이 매우 높기 때문에 동작 인식 시간에 지연을 초래한다. 이에 양 스트림 네트워크와 교사-학생 아키텍처에서 영감을 받아 행동 인식을 위한 새로운 네트워크 디자인을 개발하였다. 제안 신경망은 두 개의 하위 네트워크로 구성되어있다. 즉, 교사 역할을 하는 광학 흐름 하위 네트워크와 학생 역할을 하는 RGB 프레임 하위 네트워크를 연결하였다. 훈련 단계에서 광학 흐름의 특징을 추출하고 교사 서브 네트워크를 훈련시킨 다음 그 특징을 학생 서브 네트워크를 훈련시키기 위한 기준선으로 지정하여 학생 서브 네트워크에 전송한다. 테스트 단계에서는 광학 흐름을 계산하지 않고 대기 시간이 줄어들도록 학생 네트워크만 사용한다. 제안 네트워크는 실험을 통하여 정확도 면에서 일반 이중 스트림 아키텍처에 비해 높은 정확도를 보여주는 것을 확인하였다.

Micro-Expression Recognition Base on Optical Flow Features and Improved MobileNetV2

  • Xu, Wei;Zheng, Hao;Yang, Zhongxue;Yang, Yingjie
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제15권6호
    • /
    • pp.1981-1995
    • /
    • 2021
  • When a person tries to conceal emotions, real emotions will manifest themselves in the form of micro-expressions. Research on facial micro-expression recognition is still extremely challenging in the field of pattern recognition. This is because it is difficult to implement the best feature extraction method to cope with micro-expressions with small changes and short duration. Most methods are based on hand-crafted features to extract subtle facial movements. In this study, we introduce a method that incorporates optical flow and deep learning. First, we take out the onset frame and the apex frame from each video sequence. Then, the motion features between these two frames are extracted using the optical flow method. Finally, the features are inputted into an improved MobileNetV2 model, where SVM is applied to classify expressions. In order to evaluate the effectiveness of the method, we conduct experiments on the public spontaneous micro-expression database CASME II. Under the condition of applying the leave-one-subject-out cross-validation method, the recognition accuracy rate reaches 53.01%, and the F-score reaches 0.5231. The results show that the proposed method can significantly improve the micro-expression recognition performance.

안정적인 실시간 얼굴 특징점 추적과 감정인식 응용 (Robust Real-time Tracking of Facial Features with Application to Emotion Recognition)

  • 안병태;김응희;손진훈;권인소
    • 로봇학회논문지
    • /
    • 제8권4호
    • /
    • pp.266-272
    • /
    • 2013
  • Facial feature extraction and tracking are essential steps in human-robot-interaction (HRI) field such as face recognition, gaze estimation, and emotion recognition. Active shape model (ASM) is one of the successful generative models that extract the facial features. However, applying only ASM is not adequate for modeling a face in actual applications, because positions of facial features are unstably extracted due to limitation of the number of iterations in the ASM fitting algorithm. The unaccurate positions of facial features decrease the performance of the emotion recognition. In this paper, we propose real-time facial feature extraction and tracking framework using ASM and LK optical flow for emotion recognition. LK optical flow is desirable to estimate time-varying geometric parameters in sequential face images. In addition, we introduce a straightforward method to avoid tracking failure caused by partial occlusions that can be a serious problem for tracking based algorithm. Emotion recognition experiments with k-NN and SVM classifier shows over 95% classification accuracy for three emotions: "joy", "anger", and "disgust".

Hand Gesture Recognition using Optical Flow Field Segmentation and Boundary Complexity Comparison based on Hidden Markov Models

  • Park, Sang-Yun;Lee, Eung-Joo
    • 한국멀티미디어학회논문지
    • /
    • 제14권4호
    • /
    • pp.504-516
    • /
    • 2011
  • In this paper, we will present a method to detect human hand and recognize hand gesture. For detecting the hand region, we use the feature of human skin color and hand feature (with boundary complexity) to detect the hand region from the input image; and use algorithm of optical flow to track the hand movement. Hand gesture recognition is composed of two parts: 1. Posture recognition and 2. Motion recognition, for describing the hand posture feature, we employ the Fourier descriptor method because it's rotation invariant. And we employ PCA method to extract the feature among gesture frames sequences. The HMM method will finally be used to recognize these feature to make a final decision of a hand gesture. Through the experiment, we can see that our proposed method can achieve 99% recognition rate at environment with simple background and no face region together, and reduce to 89.5% at the environment with complex background and with face region. These results can illustrate that the proposed algorithm can be applied as a production.

광류와 표정 HMM에 의한 동영상으로부터의 실시간 얼굴표정 인식 (Realtime Facial Expression Recognition from Video Sequences Using Optical Flow and Expression HMM)

  • 전준철;신기한
    • 인터넷정보학회논문지
    • /
    • 제10권4호
    • /
    • pp.55-70
    • /
    • 2009
  • 비전기반 인간컴퓨터 상호작용은 컴퓨터와 인간의 상호소통을 자연스럽게 제공하는 측면에서 과학과 산업분야에서 주목받는 연구 분야이다. 그러한 측면에서 얼굴표정인식에 의한 인간의 심리적 상태를 추론하는 기술은 중요한 이슈이다. 본 연구에서는 감성인식 HMM 모델과 광류에 기반한 얼굴 움직임 추적 방법을 이용하여 동영상으로부터 얼굴표정을 인식하는 새로운 방법을 제시하였다. 특히, 기존의 감성상태 변환을 설명하는 HMM 모델은 특정 표정상태 간의 전환 시 항상 중립 상태를 거치도록 설계되어 있다. 그러나 본 연구에서는 기존의 표정상태 전환 모델에 중간상태를 거치는 과정 없이 특정 표정 상태간의 변환이 가능한 확장된 HMM 모델을 제시한다. 동영상으로부터 얼굴의 특성정보를 추출하기 위하여 탬플릿 매칭과 광류방법을 적용하였다. 광류에 의해 추적된 얼굴의 표정특성 정보는 얼굴표정인식을 위한 HMM의 매개변수 정보로 사용된다. 실험을 통하여 제안된 얼굴표정인식 방법이 실시간 얼굴 표정인식에 효과적임을 입증하였다.

  • PDF

행동인식을 위한 다중 영역 기반 방사형 GCN 알고리즘 (Multi-Region based Radial GCN algorithm for Human action Recognition)

  • 장한별;이칠우
    • 스마트미디어저널
    • /
    • 제11권1호
    • /
    • pp.46-57
    • /
    • 2022
  • 본 논문에서는 딥러닝을 기반으로 입력영상의 옵티컬 플로우(optical flow)와 그래디언트(gradient)를 이용하여 종단간 행동인식이 가능한 다중영역 기반 방사성 GCN(MRGCN: Multi-region based Radial Graph Convolutional Network) 알고리즘에 대해 기술한다. 이 방법은 데이터 취득이 어렵고 계산이 복잡한 스켈레톤 정보를 사용하지 않기 때문에 카메라만을 주로 사용하는 일반 CCTV 환경에도 활용이 가능하다. MRGCN의 특징은 입력영상의 옵티컬플로우와 그래디언트를 방향성 히스토그램으로 표현한 후 계산량 축소를 위해 6개의 특징 벡터로 변환하여 사용한다는 것과 시공간 영역에서 인체의 움직임과 형상변화를 계층적으로 전파시키기 위해 새롭게 고안한 방사형 구조의 네트워크 모델을 사용한다는 것이다. 또 데이터 입력 영역을 서로 겹치도록 배치하여 각 노드 간에 공간적으로 단절이 없는 정보를 입력으로 사용한 것도 중요한 특징이다. 30가지의 행동에 대해 성능평가 실험을 수행한 결과 스켈레톤 데이터를 입력으로 사용한 기존의 GCN기반 행동인식과 동등한 84.78%의 Top-1 정확도를 얻을 수 있었다. 이 결과로부터 취득이 어려운 스켈레톤 정보를 사용하지 않는 MRGCN이 복잡한 행동인식이 필요한 실제 상황에서 더욱 실용적인 방법임을 알 수 있었다.

Improved DT Algorithm Based Human Action Features Detection

  • Hu, Zeyuan;Lee, Suk-Hwan;Lee, Eung-Joo
    • 한국멀티미디어학회논문지
    • /
    • 제21권4호
    • /
    • pp.478-484
    • /
    • 2018
  • The choice of the motion features influences the result of the human action recognition method directly. Many factors often influence the single feature differently, such as appearance of the human body, environment and video camera. So the accuracy of action recognition is restricted. On the bases of studying the representation and recognition of human actions, and giving fully consideration to the advantages and disadvantages of different features, the Dense Trajectories(DT) algorithm is a very classic algorithm in the field of behavior recognition feature extraction, but there are some defects in the use of optical flow images. In this paper, we will use the improved Dense Trajectories(iDT) algorithm to optimize and extract the optical flow features in the movement of human action, then we will combined with Support Vector Machine methods to identify human behavior, and use the image in the KTH database for training and testing.