• Title/Summary/Keyword: Recloser-recloser coordination

Search Result 32, Processing Time 0.015 seconds

A Simulation Program for Protection Coordination in the Power Distribution System with Distributed Generators (분산전원 연계 배전계통의 보호협조 정정 프로그램 개발)

  • Kim, Sang-Ok;Seo, In-Yong;Lee, Heung-Ho;Rho, Dae-Seok
    • Journal of the Korea Society for Simulation
    • /
    • v.22 no.1
    • /
    • pp.1-8
    • /
    • 2013
  • A higher penetration of renewable energy sources and adoption of renewable portfolio standard(RPS), the penetration of distributed generators(DGs) into power distribution network is becoming a threat for the safe operation of distribution network. The ground fault current of DGs can cause parasitic trip and mal-trip of protective device in the power distribution network. KEPRI has developed a simulation program for current setting of protective devices in DGs connected distribution network. In this study, we analyzed fault currents of a sample network in two cases, i.e. case 1 is for no DG connection, case 2 for a DG connection. We performed protection coordination for relays installed in the network and analyzed the contribution of a DG.

Optimal Operation Algorithm of Protection Devices in Distribution Systems With PV System (대용량 태양광전원이 연계된 배전선로에 있어서 보호협조기기의 최적 운용알고리즘)

  • Kwon, Soon-hwan;Lee, Hu-dong;Nam, Yang-hyun;Rho, Dae-seok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.5
    • /
    • pp.17-26
    • /
    • 2018
  • If a photovoltaic (PV) system is installed in a primary feeder interconnected with the PV system, bi-directional power flow can occur, and then, the magnitude and direction of the fault current can change, depending on the fault location and point of common coupling (PCC) of the PV system, and the time current curve (TCC) cannot be properly coordinated between protection devices. Also, it is difficult to obtain a proper time interval for protection devices because the conventional setting approach is applied, even though the PV system is installed and operating. Therefore, this paper presents three operation modes considering the operational conditions of the PV system to obtain setting values for protection devices. Based on the mode, this paper proposes an algorithm to calculate the optimal protection coordination time interval according to the introduction capacity of the PV system. In addition, this paper performs modelling of a distribution system with the PV system and protection devices by using Off-DAS S/W, and analyzes the characteristics of the time interval between the protection devices, such as substation relays, reclosers, customer relays, and PV customer relays. The simulation results confirmed that the proposed operational modes and setting-value algorithms are useful and effective for protection coordination in a distribution system for a PV system.