• Title/Summary/Keyword: Recirculating Region

Search Result 67, Processing Time 0.023 seconds

Flow-Induced Vibration Test in the Preheater Region of a Steam Generator Tube Bundle

  • Kim, Beom-Shig;Hwang, Jong-Keun
    • Nuclear Engineering and Technology
    • /
    • v.29 no.1
    • /
    • pp.85-91
    • /
    • 1997
  • Cross-flow existing in a shell-and-tube steam generator can cause a tube to vibrate. There are four regions subjected to cross-flow in Yonggwang units 3 and 4 (YGN 3 and 4) steam generators, which are of the same design as the steam generators for Palo Verde nuclear power plant Palo Verde units 1 and 2 steam generators have experienced localized oar at the comers of the cold side recirculating fluid inlet regions. A number of design modifications were made to preclude tube failure in specific regions of YGN 3 and 4 steam generators. Therefore, flow induced vibration experiments were done to determine the vibration magnitude of tubes in the economizer tube free lane region. The objective of this experiment is to demonstrate that the tube displacement is less than 0.01 inch rms at 100% of full power flow and to quantify the remaining design margin at 120ft and 140% of full power flow.

  • PDF

Investigation on the Turbulence Structure of Reattaching Separated Shear Layer Past a Two-Dimensional Vetrical Fenc(I) (2次元 垂直壁을 지니는 再附着 剝離 斷層 의 亂流構造 에 관한 硏究 (I))

  • 김경천;정명균
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.9 no.4
    • /
    • pp.403-413
    • /
    • 1985
  • Hot-wire measurements of second and third-order mean products of velocity fluctuations have been made in the separated, reattached, and redeveloping boundary layer behind a vertical fence. Mean velocity, wall static pressure distributions have also been measured in the whole flow field. Upstream of the reattachment point, the separated shear layer developes as a free mixing layer, but the gradient of the maximum slope thickness, turbulent intensities and the Reynolds shear stress are higher than that of the mixing layer due to initial streamline curvature and the effects of highly turbulent recirculating flow region. In the reattachment region, Reynolds shear stress and triple products near the surface is far more rapid than the decrease of the shear stress; that is the presence of the solid wall has a marked effect on the apparent gradient diffusivity of intensity or shear stress and throws doubts upon the usefulness of the simple gradient diffusivity model in this region.

Study on the turbulent structure for two-dimensional recirculating flows by curvature dependent 2-equation model (曲率修正2方程式모델을 利용한 2次元 再循環 亂流 流動構造의 硏究)

  • 박상우;정명균
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.11 no.3
    • /
    • pp.444-453
    • /
    • 1987
  • In the present study, a new computational closure model is proposed in order to contain physical models in the k- and .epsilon.- equations. The time scale of the third-order diffusive transport of turbulent kinetic energy in a curved streamline flow field is assumed as a function of a velocity time scale and a curvature time scale, the latter being derived from the analogy between buoyancy and streamline curvature effects on turbulence. The curvature time scale is represented by a combination of Brunt-Vaisala frequency of the curvature instability and the velocity time scale. Besides the modification of diffusive transport time scale, the destruction term in the dissipation rate equation is modeled to incorporate the streamline curvature effect on the dissipation rate of turbulent kinetic energy as a function of the ratio between velocity time scale and curvature time scale. The new curvature dependent 2-equation model is found to yield very good prediction accuracy for the various turbulent recirculating flows. Particurarly, the recovery of the mean velocity profile in the redeveloping region after the reattachment is correctly simulated by the present model.

Fluidelastic Instability Analysis of the U-Tube Bundle of a Recirculating Type Steam Generator (재순환식 증기발생기 U-튜브군에 대한 유체탄성 불안정 해석)

  • 조종철;이상균;김웅식;신원기;은영수
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.1
    • /
    • pp.200-214
    • /
    • 1993
  • This paper presents the results of fluidelastic instability analysis performed for the U-tube bundle of a Westinghouse model 51 steam generator, one of the recirculating types designed at an early stage, in which the principal region of external cross-flow is associated with the U-bend portion of tube. The prerequisites for this analysis are detailed informations of the secondary side flow conditions in the steam generator and the free vibration behaviours of the U-tubes. In this study, the three-dimensional two-phase flow field in the steam generator has been calculated employing the ATHOS3 steam generator two-phase flow code and the ANSYS engineering analysis code has been used to calculate the free vibration responses of specific U tubes under consideration. The assessment of the potential instability for the suspect U-tubes, which is the final analysis process of the present work, has been accomplished by combining the secondary side velocity and density distributions obtained from the ATHOS3 prediction with the relative modal displacement and natural frequency data calculated using the ANSYS code. The damping of tubes in two-phase flow has been deduced from the existing experimental data by taking into account the secondary side void fraction effect. In operation of the steam generator, the tube support conditions at the tube-to-tube support plate intersections due to either tube denting degradation or deposition of tube support plate corrosion products or ingression of dregs. Thus, various hypothetical cases regarding the tube support conditions at the tube-to-tube support plate intersections have been considered to investigate the clamped support effects on the forced vibration response of the tube. Also, the effect of anti-vibration bars support in the curved portion of tube has been examined.

DETACHED EDDY SIMULATION OF BASE FLOW IN SUPERSONIC MAINSTREAM (초음속 유동장에서 기저 유동의 Detached Eddy Simulation)

  • Shin, J.R.;Won, S.H.;Choi, J.Y.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03a
    • /
    • pp.104-110
    • /
    • 2008
  • Detached Eddy Simulation (DES) is applied to an axisymmetric base flow at supersonic mainstream. DES is a hybrid approach to modeling turbulence that combines the best features of the Reynolds-averaged Navier-Stokes RANS) and large-eddy simulation (LES) approaches. In the Reynolds-averaged mode, the model is currently based on either the Spalart-Allmaras (S-A) turbulence model. In the large eddy simulation mode, it is based on the Smagorinski subgrid scale model. Accurate predictions of the base flowfield and base pressure are successfully achieved by using the DES methodology with less computational cost than that of pure LES and monotone integrated large-eddy simulation (MILES) approaches. The DES accurately resolves the physics of unsteady turbulent motions, such as shear layer rollup, large-eddy motions in the downstream region, small-eddy motions inside the recirculating region. Comparison of the results shows that it is necessary to resolve approaching boundary layers and free shear-layer velocity profiles from the base edge correctly for the accurate prediction of base flows. The consideration of an empirical constant CDES for a compressible flow analysis may suggest that the optimal value of empirical constant CDES may be larger in the flows with strong compressibility than in incompressible flows.

  • PDF

DETACHED EDDY SIMULATION OF BASE FLOW IN SUPERSONIC MAINSTREAM (초음속 유동장에서 기저 유동의 Detached Eddy Simulation)

  • Shin, J.R.;Won, S.H.;Choi, J.Y.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.104-110
    • /
    • 2008
  • Detached Eddy Simulation (DES) is applied to an axisymmetric base flow at supersonic mainstream. DES is a hybrid approach to modeling turbulence that combines the best features of the Reynolds-averaged Navier-Stokes (RANS) and large-eddy simulation (LES) approaches. In the Reynolds-averaged mode, the model is currently based on either the Spalart-Allmaras (S-A) turbulence model. In the large eddy simulation mode, it is based on the Smagorinski subgrid scale model. Accurate predictions of the base flowfield and base pressure are successfully achieved by using the DES methodology with less computational cost than that of pure LES and monotone integrated large-eddy simulation (MILES) approaches. The DES accurately resolves the physics of unsteady turbulent motions, such as shear layer rollup, large-eddy motions in the downstream region, small-eddy motions inside the recirculating region. Comparison of the results shows that it is necessary to resolve approaching boundary layers and free shear-layer velocity profiles from the base edge correctly for the accurate prediction of base flows. The consideration of an empirical constant CDES for a compressible flow analysis may suggest that the optimal value of empirical constant CDES may be larger in the flows with strong compressibility than in incompressible flows.

  • PDF

Effect of geometrical parameters of reentry capsule over flowfield at high speed flow

  • Mehta, R.C.
    • Advances in aircraft and spacecraft science
    • /
    • v.4 no.4
    • /
    • pp.487-501
    • /
    • 2017
  • The main purpose of the paper is to analyze effect of geometrical parameters of the reentry capsules such as radius of the spherical cap, shoulder radius, back shell inclination angle and overall length on the flow field characteristics. The numerical simulation with viscous flow past ARD (Atmospheric Reentry Demonstrator), Soyuz (Russian) and OREX (Orbital Reentry EXperimental) reentry capsules for freestream Mach numbers range of 2.0-5.0 is carried out by solving time-dependent, axisymmetric, compressible laminar Navier-Stokes equations. These reentry capsules appear as bell, head light and saucer in shape. The flow field features around the reentry capsules such as bow shock wave, sonic line, expansion fan and recirculating flow region are well captured by the present numerical simulations. A low pressure is observed immediately downstream of the base region of the capsule which can be attributed to fill-up in the growing space between the shock wave and the reentry module. The back shell angle and the radius of the shoulder over the capsule are having a significant effect on the wall pressure distribution. The effects of geometrical parameters of the reentry capsules will useful input for the calculation of ballistic coefficient of the reentry module.

Numerical Study of Turbulent Flow Around a Rotating Cylinder with Surface Roughness (표면에 계단이 부착된 회전하는 실린더 주위 난류유동의 전산해석)

  • Yang, Kyung-Soo;Hwang, Jong-Yeon;Kim, Young-Wan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.8
    • /
    • pp.1104-1111
    • /
    • 2000
  • Erosion-corrosion in a pipe system often occurs at fittings, valves, and weld beads where flow separation and reattachment yield high turbulence intensity. Thus identifying their correlations would be the first step towards resolving the erosion-corrosion problems associated with industrial applications. Bremhorst of the Univ. of Queensland, Australia, proposed that a rotating cylinder with surface roughness (two backward-facing steps periodically mounted on a circular cylinder) be an economical and tractable tool which can generate extreme flow conditions for erosion-corrosion study. In this work, DNS has been carried out for turbulent flows around the same rotating cylinder as his experimental apparatus. Our result shows that a region of intense turbulence intensity and high wall-shear stress fluctuation is formed along the cylinder surface in the recirculating region behind the step, where high mass-transfer capacity is also experimentally observed. Since corrosion is mass-transfer controlled, our finding sheds light on the direction of future corrosion research.

A Study of Thermal Effects for a Half-Circumferential Grooved Journal Bearing (半圓周形 윤활홈을 갖는 저어널 베어링의 熱效果에 관한 연구)

  • Chun, Sang-Myung;Lalas, Demetrius P.
    • Tribology and Lubricants
    • /
    • v.6 no.1
    • /
    • pp.36-51
    • /
    • 1990
  • A parametric study of the thermal effects of a half-circumferential grooved journal bearings under aligned and misaligned conditions has been carried out by solving numerically the coupled Reynolds and energy equation system. Five different sets of boundary conditions for the energy equation have been used which include mixing between recirculating oil and inlet oil and a contraction ratio for the cavitation region. The effects of changes of the inlet oil temperature and pressure, the wall temperature and the L/D ratio have also been examined. For the range of parameters found in internal combustion engines, the mixing effectiveness at the groove and the resulting final mixture temperature have been found to be as important as the wall temperature and the heat transfer rate. The variability of the temperature, though, has been shown to smooth out the peaks of both pressure and friction during misaligned condition Distributions of friction and pressure in the oil are also examined which may be useful in attempts to reduce friction without reducing load. Results for an axial grooved bearing are also presentsed for comparision purpose.

Thermal Effluent through Extruded Side Channel

  • Yoon, Tae-Hoon;Yook, Woon-Soo;Yi, Young-Kon
    • Korean Journal of Hydrosciences
    • /
    • v.6
    • /
    • pp.67-79
    • /
    • 1995
  • The reattachment of buoyant efflluent to a shore in a crossflow is investigated experimentally. The effluent is prodeced by discharging heated water through a projected side channel into a confined crossflow of the same depth. In the projecting effluent, the size of recirculating region, which is formed by deflected thermal plume on the lee of the effluent, tends to increase, but the maximum temperature decreases in the direction of the crossflow and it has more uniform transverse spreading compared to non-projected type. The heat flux across the crossflow is found to be independent of the projceted length of the side channel under relatively high buoyancy flux on the contrary to low buoyancy flux. The reattachment of th effluent can be specified by both velocity ratio and densimetric Froude number, whereas only the velocity ratio is governing factor to the reattachment of the effluent in the case of non-projecting type.

  • PDF