• Title/Summary/Keyword: Receptor activator of NF-${\kappa}B$

Search Result 61, Processing Time 0.024 seconds

Gentianae Macrophyllae Radix Water Extract Inhibits RANKL-Induced Osteoclastogenesis and Osteoclast Specific Genes (진교의 파골세포 분화 및 골 흡수 유전자 억제기전 연구)

  • Yang, Kyujin;Kim, Jae Hyun;Kim, Minsun;Ryu, Gwang-hyun;Moon, Jin-Ho;Lee, Hye-In;Jung, Hyuk-Sang;Sohn, Youngjoo
    • Korean Journal of Acupuncture
    • /
    • v.37 no.2
    • /
    • pp.63-75
    • /
    • 2020
  • Objectives : Osteoporosis is the most common bone disease and osteoporosis fracture is the leading cause of decreased life. Bisphosphonate and selective estrogen receptor modulators are the best choice of treatment for osteoporosis. However, when used for a long time, they increase the probability of side effect such as osteonecrosis of the jaw. Thus, it is crucial to develop alternative medicine to treat osteoporosis. Gentianae Macrophyllae Radix, a herbal medicine, is mainly to treat rheumatoid arthritis. However, the effect of the water extract of Gentianae Macrophyllae Radix (w-GM) on osteoporosis has not been investigated. Thus, we examine whether w-GM can inhibit osteoclast differentiation and bone resorption on receptor activator of nuclear factor kappa-B (NF-κB) ligand (RANKL)-treated RAW 264.7 cells. In this study, RAW 264.7 cells were used as an osteoclast differentiation model by treating them with RANKL. Methods : RAW 264.7 cells were used to determine the effect of w-GM on osteoclast differentiation and bone resorption. The number of tartrate-resistant acid phosphatase (TRAP)-positive cells, TRAP activity and pit formation assay were examined. In addition, protein expressions were measured by western blot and mRNA expressions were analyzed by reverse transcription polymerase chain reaction. Results : Treatment with w-GM inhibited the number of TRAP-positive cells, TRAP activity and pit area. In addition, w-GM decreased protein expression such as mitogen-activated protein kinase, NF-κB, c-Fos and nuclear factor of activated T-cells cytoplasmic 1 (NFATc1). It also inhibited the mRNA levels such as c-Fos, NFATc1, TRAP, NF-κB, calcitonin receptor and cathepsin K in RANKL-treated RAW 264.7 cells. Conclusions : These results suggest that w-GM has inhibitory effects via osteoclast differentiation, thus it could be a new medication for osteoporosis.

Bone Cell Response to Neurotransmitters and Mechanical Loading (신경전달물질 및 물리적 자극에 대한 뼈 세포의 반응)

  • Kwag, J.H.;Kim, B.G.;Kim, K.H.;Kim, C.H.
    • Journal of Biomedical Engineering Research
    • /
    • v.30 no.1
    • /
    • pp.89-93
    • /
    • 2009
  • Bone remodeling is a continuous process of skeletal renewal during which bone formation is tightly coupled to bone resorption. Mechanical loading is an important regulator of bone formation and resorption. In recent studies, neurotransmitters such as vasoactive intestinal peptide (VIP) were found to be present inside bone tissue and have been suggested to potentially regulate bone remodeling. In this study, our objective was to use a pre-established in vitro oscillatory fluid flow-induced shear stress mechanical loading system to quantify the effect of VIP on bone resorptive activity and investigate its combined effect with mechanical loading. VIP decreased osteoclastogenesis significantly decreased RANKL/OPG mRNA ration by approximately 90%. Combined VIP and mechanical loading further decreased RANKL/OPG ratio to approximately 95%. These results suggest that VIP present in bone tissue may synergistically act with mechanical loading to regulate bone remodeling via suppression of bone resorptive activities.

Effect of Spinach Extract on RANKL-Mediated Osteoclast Differentiation (RANKL에 의해 유도되는 파골세포 분화에 대한 시금치 추출물의 영향)

  • Kim, Dong-Gyu;Kim, Mi-Hye;Kang, Min Jung;Shin, Jung Hye
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.44 no.4
    • /
    • pp.532-539
    • /
    • 2015
  • Inhibition of osteoclast differentiation is the most important target for prevention of inflammatory bone resorption and bone diseases. Here, we investigated the effect of spinach ethanol extract on osteoclast differentiation in RAW264.7 cells. Spinach was extracted with ethanol at a concentration ranging from 0 to 100% (0, 25, 50, 75, and 100% ethanol). Inhibitory effects of receptor activator of NF-${\kappa}B$ ligan (RANKL)-induced osteoclast differentiation were evaluated using tartrate-resistant acid phosphatase (TRAP) stain assay. The most effective eanol concentration for osteoclast differentiation was 100%. Spinach extract (100% ethanol) suppressed RANKL-induced osteoclast differentiation and TRAP activity. Spinach extract (100% ethanol) also suppressed expression of osteoclast differentiation-related marker genes (NFATc1, c-FOS, cathepsin K, and TRAP) and down-regulated RANKL-induced NF-${\kappa}B$ and ERK phosphorylation during osteoclast differentiation. Taken together, our results suggest that spinach extract is effective against reducing osteoclast differentiation through the NF-${\kappa}B$-mediated pathway.

Inhibitory Effects of Artemisia asiatica on Osteoclast Formation Induced by Periodontopathogens

  • Moon, Sun-Young;Choi, Bong-Kyu;Cha, Jeong-Heon;Min, Chon-Ki;Son, Mi-Won;Yoo, Yun-Jung
    • Food Science and Biotechnology
    • /
    • v.14 no.1
    • /
    • pp.94-98
    • /
    • 2005
  • Bone resorption surrounding tooth root causes tooth loss in periodontitis patients. Osteoclast has bone resorption activity. Effects of Artemisia asiatica on bone resorption induced by periodontopathogens, Porphyromonas gingivalis and Treponema denticola, were examined using co-culture systems of mouse osteoblasts and bone marrow cells. Addition of A. asiatica ethanol extract to bacterial sonicate abolished bacteria-induced osteoclastogenesis. To determine inhibitory mechanism of A. asiatica against osteoclastogenesis, effects of A. asiatica on expressions of osteoclastogenesis-inducing factors such as receptor activator of NF-${\kappa}B$ ligand (RANKL), prostaglandin $E_2\;(PGE_2)$, interleukin (IL)-1, and tumor necrosis factor (TNF)-${\alpha}$, in osteoblasts were examined. A. asiatica suppressed expressions of RANKL, $PGE_2$, IL-$1{\beta}$, and TNF-${\alpha}$ increased by each bacterial sonicate. These results suggest inhibitory action of A. asiatica against osteoclastogenesis is associated with down-regulations of RANKL, $PGE_2$ IL-$1{\beta}$, and TNF-${\alpha}$ expressions.

Carboxypeptidase E Is a Novel Modulator of RANKL-Induced Osteoclast Differentiation

  • Kim, Hyun-Ju;Hong, JungMin;Yoon, Hye-Jin;Yoon, Young-Ran;Kim, Shin-Yoon
    • Molecules and Cells
    • /
    • v.37 no.9
    • /
    • pp.685-690
    • /
    • 2014
  • Osteoclasts are large polykaryons that have the unique capacity to degrade bone and are generated by the differentiation of myeloid lineage progenitors. To identify the genes involved in osteoclast development, we performed microarray analysis, and we found that carboxypeptidase E (CPE), a prohormone processing enzyme, was highly upregulated in osteoclasts compared with their precursors, bone marrow-derived macrophages (BMMs). Here, we demonstrate a novel role for CPE in receptor activator of NF-${\kappa}B$ ligand (RANKL)-induced osteoclast differentiation. The overexpression of CPE in BMMs increases the formation of tartrate-resistant acid phosphatase (TRAP)-positive multinuclear osteoclasts and the expression of c-Fos and nuclear factor of activated T cells c1 (NFATc1), which are key regulators in osteoclastogenesis. Furthermore, employing CPE knockout mice, we show that CPE deficiency attenuates osteoclast formation. Together, our data suggest that CPE might be an important modulator of RANKL-induced osteoclast differentiation.

Effect of Ssangwha-tang Fermented by Lactobacillus fermentum on Osteoclast Differentiation and Osteoporosis of Ovariectomized Rats (Lactobacillus fermentum으로 발효한 쌍화탕의 파골 세포 분화와 난소 적출한 랫트의 골다공증에 미치는 영향)

  • Shim, Ki-Shuk;Lee, Ji-Hye;Lee, Jae-Hoon;Ma, Jin-Yeul
    • Korean Journal of Oriental Medicine
    • /
    • v.16 no.1
    • /
    • pp.149-155
    • /
    • 2010
  • Objective : Ssangwha-tang is a traditional medicine formula widely prescribed for a decrease of fatigue after an illness in Korea. The aim of this study is to investigate the effect of Ssangwha-tang fermented by Lactobacillus fermentum (SF) on osteoclast differentiation in vitro and on bone metabolism of an ovariectomized rat in vivo. Methods : Tartrate-resistant acid phosphatase activity and staining were applied to evaluate the formation of osteoclasts. Ovariectomized rats were orally administrated with SF (30 ml/kg/day) for 12 weeks. Serum aspartate aminotransferase, alanine aminotransferase, alkaline phosphatase, total cholesterol, high-density lipoprotein-cholesterol, low-density lipoprotein-cholesterol, triglyceride, phosphate, calcium levels were determined. Effect of SF on bone loss were studied by histological analysis and the measurement of bone mineral density. Results : SF significantly inhibited tartrate-resistant acid phosphatase activity and formation of osteoclasts in RAW264.7 cells stimulated by receptor activator for nuclear factor ${\kappa}B$ (NF-${\kappa}B$) ligand (RANKL). In addition, SF significantly decreased the level of triglyceride and increased the level of low-density lipoprotein. Moreover, the decrease of trabeculae of the femur was partially prevented in ovariectomized rats administrated with SF. Conclusions : SF treatment could prevent ovariectomy induced bone loss and its effects could be medicated by the inhibition of osteoclastogenesis.

Inhibitory effect of Ssanghwa-tang on bone loss in ovariectomized rats

  • Shim, Ki-Shuk;Lee, Ji-Hye;Ma, Choong-Je;Lee, Yoon-Hee;Choi, Sung-Up;Lee, Jae-Hoon;Ma, Jin-Yeul
    • Animal cells and systems
    • /
    • v.14 no.4
    • /
    • pp.283-289
    • /
    • 2010
  • Ssanghwa-tang (SHT) is a traditional Korean herbal medicine widely prescribed to decrease fatigue following an illness. The purpose of this study was to investigate the effects of SHT on osteoclast differentiation in vitro, and on bone loss in ovariectomized (OVX) rats in vivo. SHT significantly reduced the receptor activator for the nuclear factor ${\kappa}B$ (NF-${\kappa}B$) ligand (RANKL)-induced tartrate-resistant acid phosphatase (TRAP) activity, and multinucleated osteoclast formation in RAW264.7 cells without affecting cell viability. In addition, SHT significantly attenuated RANKL-induced mRNA expression levels of c-Src and cathepsin K. To examine the in vivo effect of SHT on OVX-induced bone loss in OVX rats, we administered SHT (0.6 g/kg BID) orally to OVX rats for 12 weeks. SHT administration significantly blocked OVX-induced decrease of femoral bone mineral density (BMD) and femoral trabeculae in OVX rats. In conclusion, these results suggest that SHT treatment effectively prevents OVX-induced bone loss, and this effect may result from its inhibitory effect on osteoclast differentiation.

Glutaredoxin2 isoform b (Glrx2b) promotes RANKL-induced osteoclastogenesis through activation of the p38-MAPK signaling pathway

  • Yeon, Jeong-Tae;Choi, Sik-Won;Park, Kie-In;Choi, Min-Kyu;Kim, Jeong-Joong;Youn, Byung-Soo;Lee, Myeung-Su;Oh, Jae-Min
    • BMB Reports
    • /
    • v.45 no.3
    • /
    • pp.171-176
    • /
    • 2012
  • Receptor activator of NF-${\kappa}B$ ligand (RANKL) triggers the differentiation of bone marrow-derived monocyte/macrophage precursor cells (BMMs) of hematopoietic origin into osteoclasts through the activation of mitogen-activated protein (MAP) kinases and transcription factors. Recently, reactive oxygen species (ROS) and antioxidant enzymes were shown to be closely associated with RANKL-mediated osteoclast differentiation. Although glutaredoxin2 (Glrx2) plays a role in cellular redox homeostasis, its role in RANKL-mediated osteoclastogenesis is unclear. We found that Glrx2 isoform b (Glrx2b) expression is induced during RANKLmediated osteoclastogenesis. Over-expression of Glrx2b strongly enhanced RANKL- mediated osteoclastogenesis. In addition, Glrx2b-transduced BMMs enhanced the expression of key transcription factors c-Fos and NFATc1, but pre-treatment with SB203580, a p38-specific inhibitor, completely blocked this enhancement. Conversely, down-regulation of Glrx2b decreased RANKL- mediated osteoclastogenesis and the expression of c-Fos and NFATc1 proteins. Also, Glrx2b down-regulation attenuated the RANKL-induced activation of p38. Taken together, these results suggest that Glrx2b enhances RANKL-induced osteoclastogenesis via p38 activation.

Activation of G Proteins by Aluminum Fluoride Enhances RANKL-Mediated Osteoclastogenesis

  • Park, Boryung;Yang, Yu-Mi;Choi, Byung-Jai;Kim, Min Seuk;Shin, Dong Min
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.17 no.5
    • /
    • pp.427-433
    • /
    • 2013
  • Receptor activator of NF-${\kappa}B$ ligand (RANKL)-induced osteoclastogenesis is accompanied by intracellular $Ca^{2+}$ mobilization in a form of oscillations, which plays essential roles by activating sequentially $Ca^{2+}$/calmodulin-dependent protein kinase, calcineurin and NFATc1, necessary in the osteoclast differentiation. However, it is not known whether $Ca^{2+}$ mobilization which is evoked in RANKL-independent way induces to differentiate into osteoclasts. In present study, we investigated $Ca^{2+}$ mobilization induced by aluminum fluoride ($AlF_4^-$), a G-protein activator, with or without RANKL and the effects of $AlF_4^-$ on the osteoclastogenesis in primary cultured mouse bone marrow-derived macrophages (BMMs). We show here that $AlF_4^-$ induces intracellular $Ca^{2+}$ concentration ($[Ca^{2+}]_i$) oscillations, which is dependent on extracellular $Ca^{2+}$ influx. Notably, co-stimulation of $AlF_4^-$ with RANKL resulted in enhanced NFATc1 expression and formation of tartrate-resistant acid phosphatase (TRAP) positive multinucleated cells. Additionally, we confirmed that mitogen-activated protein kinase (MAPK) is also activated by $AlF_4^-$. Taken together, these results demonstrate that G-protein would be a novel modulator responsible for $[Ca^{2+}]_i$ oscillations and MAPK activation which lead to enhancement of RANKL-mediated osteoclastogenesis.

TRPM7 Is Essential for RANKL-Induced Osteoclastogenesis

  • Yang, Yu-Mi;Jung, Hwi-Hoon;Lee, Sung Jun;Choi, Hyung-Jun;Kim, Min Seuk;Shin, Dong Min
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.17 no.1
    • /
    • pp.65-71
    • /
    • 2013
  • The transient receptor potential melastatin type 7 (TRPM7) channel is a widely expressed non-selective cation channel with fusion to the C-terminal alpha kinase domain and regarded as a key regulator of whole body $Mg^{2+}$ homeostasis in mammals. However, the roles of TRPM7 during osteoclastogenesis in RAW264.7 cells and bone marrow-derived monocyte/macrophage precursor cells (BMMs) are not clear. In the present study, we investigate the roles of TRPM7 in osteoclastogenesis using methods of small interfering RNA (siRNA), RT-PCR, patch-clamp, and calcium imaging. RANKL (receptor activator of NF-${\kappa}B$ ligand) stimulation did not affect the TRPM7 expression and TRPM7-mediated current was activated in HEK293, RAW264.7, and BMM cells by the regulation of $Mg^{2+}$. Knock-down of TRPM7 by siTRPM7 reduced intracellular $Ca^{2+}$ concentration ($[Ca^{2+}]_i$) increases by 0 mM $[Mg^{2+}]_e$ in HEK293 cells and inhibited the generation of RANKL-induced $Ca^{2+}$ oscillations in RAW264.7 cells. Finally, knock-down of TRPM7 suppressed RANKL-mediated osteoclastogenesis such as activation and translocation of NFATc1, formation of multinucleated cells, and the bone resorptive activity, sequentially. These results suggest that TRPM7 plays an essential role in the RANKL-induced $[Ca^{2+}]_i$ oscillations that triggers the late stages of osteoclastogenesis.