• 제목/요약/키워드: Receptor, Epidermal growth factor

검색결과 349건 처리시간 0.022초

Antivascular Therapy via Inhibition of Receptor Tyrosine Kinases in an Orthotopic Murine Model of Salivary Adenoid Cystic Carcinoma

  • Park, Young-Wook;Kang, Hye-Jeong;Park, Jung-Min
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • 제34권1호
    • /
    • pp.59-70
    • /
    • 2008
  • Purpose: We evaluated the therapeutic effect of AEE788, a dual inhibitor of epidermal growth factor (EGF) and vascular endothelial growth factor (VEGF) receptor tyrosine kinases on human salivary adenoid cystic carcinoma (ACC) cells growing in nude mice. Experimental Design: We examined the effects of AEE788 on salivary ACC cell growth and apoptosis. To determine the in vivo effects of AEE788, nude mice with orthotopic parotid tumors were randomized to receive oral AEE788 (50 mg/kg) three times per week, injected paclitaxel ($200{\mu}g$) once per week, AEE788 plus paclitaxel, or placebo. Mechanisms of in vivo AEE788 activity were determined by immunohistochemical analysis. Results: Treatment of salivary ACC cells with AEE788 led to growth inhibition and induction of apoptosis. AEE788 inhibited tumor growth and prevented lung metastasis in nude mice. Furthermore, AEE788 potentiated growth inhibition and apoptosis of ACC tumor cells mediated by paclitaxel. Tumors of mice treated with AEE788 and AEE788 plus paclitaxel exhibited down-regulation of activated EGFR and its downstream mediators (Akt and MAPK), increased tumor and endothelial cell apoptosis, and decreased microvessel den-sity, which correlated with a decrease in the level of MMP-9, MMP-2 and bFGF expression and a decrease in the incidence of vascular metastasis. Conclusions: These data show that tumor-associated endothelial cells are important in the process of tumor-metastasis. And VEGFR can be a molecular target for therapy of metastatic lung lesion of salivary ACC.

리포다당질 (lipopolysaccharide)에 의한 기관지 점액 생성 기전에서 호중구와 상피세포 성장인자 수용체 (epidermal growth factor receptor)의 역할 (The Role of Neutrophils and Epidermal Growth Factor Receptors in Lipopolysaccharide-Induced Mucus Hypersecretion)

  • 박상면;박수연;허규영;이승헌;김제형;이상엽;신철;심재정;인광호;강경호;유세화
    • Tuberculosis and Respiratory Diseases
    • /
    • 제54권1호
    • /
    • pp.80-90
    • /
    • 2003
  • 배경 : 본 연구에서는 세균성 리포다당질(lipopolysac-charide, LPS)로 인한 호중구성 염증이 EGFR 시스템을 통해서 배상 세포의 이형성 및 점액의 과다 분비를 유발할 것이라는 가설 하에, LPS와 MMPs 억제제(matrix metalloproteinase inhibitor, MMPI)를 투여한 후 EGFR 및 MMP-9의 발현을 연구하고자 하였다. 방법 : Pathogen-free Sprague-Dawley 를, 다양한 농도의 LPS를 투여한 군과 투여하지 않은 대조군으로 나누어 기도의 조직학적인 변화를 날짜 별로 관찰하였고, MMPI(CMT-3)를 LPS 투여 3일 전부터 매일 구강을 통해 섭식시켰다. 호중구의 침윤은 다섯 개의 고배율 시야에서 관찰된 호중구의 수로 정량화하여 비교하였고, mucus glycoconjugate에 대한 AB/PAS 염색 및 MUC5AC, EGFR, MMP-9에 대한 면역조직화학 염색 (immunohistochemical stain)을 시행하였다 결과 : LPS를 투여한 경우 기도 상피의 AB/PAS 및 MUC5AC의 염색 정도는 시간 및 용량 의존적으로 증가하였고, MMPI를 치료할 경우에 LPS로 인한 배상세포의 과형성이 유의하게 감소하였다. LPS를 주입할 경우 호중구의 침윤이 증가하였고 기도 상피에서 EGFR의 발현을 증가시켰다. MMPI로 치료할 경우 LPS로 인한 호중구의 침윤 및 EGFR의 발현 그리고 배상세포의 과형성이 현저하게 감소되었다. 결론 : Matrix metalloproteinase는 호중구성 염증 및 EGFR에 의해 발생하는 LPS에 의한 배상 세포의 과형성 및 점액 과다분비의 기전에 있어서 밀접하게 관련되고, 따라서 점액 과다분비를 특징으로 하는 세균 감염으로 인한 기도 질환의 치료에 있어서 MMPI가 잠재적인 임상적 효과가 있을 것으로 사료된다.

Epidermal Growth Factor(EGF)가 생쥐 초기배아의 발생에 미치는 영향 (Effect of Epidermal Growth Factor(EGF) on Early Embryonic Development in Mouse)

  • 변혜경;이호준;김성례;김해권;김문규
    • Clinical and Experimental Reproductive Medicine
    • /
    • 제22권2호
    • /
    • pp.163-170
    • /
    • 1995
  • Growth factors (GFs) produced by the embryo or by the maternal reproductive tract have been reported to regulate the embryonic development and differentiation. Among GFs, EGF as a mitogen plays a role in mitosis and functional differentiation of trophectoderm cells in mouse. The present study was carried out to investigate the effect of EGF on development of mouse embryos and to localize EGF in the mouse oocytes and embryos, which has been reported to be detected in the reproductive tract in mammals. To investigate the effect of EGF on the development of the embryo, mouse 2-cell embryos were cultured to blastocysts stage in Ham's F10 medium, treated with EGF(10-50 ng/ml) for 72 hrs. Immunocytochemistry was performed from oocyte to blastocyst stage with anti-EGF and anti-Mouse IgG, in order to determine the stage which EGF would be expressed in mouse. Exogenous EGF (more than 10 ng/ml) in the culture medium improved the developmental and hatching rates in the mouse embryos. As a result of immunocytochemistry, the embryonic EGF was expressed after the late 4-cell stage. EGF is thought to enhance preimplantation embryonic development and hatching. Exogenous EGF in the culture medium is thought to activate EGF receptor in the late 4-cell embryos and to enhance blastulation and hatching in mouse embryos. It is concluded that EGF enhances the developmental and hatching rates in the mouse embryos.

  • PDF

Tilianin Inhibits MUC5AC Expression Mediated Via Down-Regulation of EGFR-MEK-ERK-Sp1 Signaling Pathway in NCI-H292 Human Airway Cells

  • Song, Won-Yong;Song, Yong-Seok;Ryu, Hyung Won;Oh, Sei-Ryang;Hong, JinTae;Yoon, Do-Young
    • Journal of Microbiology and Biotechnology
    • /
    • 제27권1호
    • /
    • pp.49-56
    • /
    • 2017
  • In the human airway, mucus exists to protect the respiratory system as a primary barrier of the innate immune system. However, hyperexpressed mucus limits airflow, resulting in a decrease of lung function. Among more than 20 mucin family members, MUC5AC and MUC5B are major glycoproteins in human airway mucus. The epidermal growth factor receptor (EGFR) signaling pathway is one of the mechanisms of these mucins expression and specificity protein-1 (Sp1) transcription factor is the downstream signal of this pathway, playing pivotal roles in mucin expression. Even though there are some drugs for treating mucus hypersecretion, no drug has proven effects on humans. We found that the flavonoid tilianin regulated MUC5AC expression and also inhibited Sp1 phosphorylation. In this study, we investigated how tilianin would modulate EGFR signaling and regulate mucin production. In conclusion, tilianin inhibited MUC5AC expression mediated via modulating the EGFR-MEK-ERK-Sp1 signaling pathway in NCI-H292 human airway epithelial cells. This study may provide the basis for the novel treatment of mucus hypersecretion.

iRhoms; Its Functions and Essential Roles

  • Lee, Min-Young;Nam, Ki-Hoan;Choi, Kyung-Chul
    • Biomolecules & Therapeutics
    • /
    • 제24권2호
    • /
    • pp.109-114
    • /
    • 2016
  • In Drosophila, rhomboid proteases are active cardinal regulators of epidermal growth factor receptor (EGFR) signaling pathway. iRhom1 and iRhom2, which are inactive homologs of rhomboid intramembrane serine proteases, are lacking essential catalytic residues. These are necessary for maturation and trafficking of tumor necrosis factor-alpha (TNF-${\alpha}$) converting enzyme (TACE) from endoplasmic reticulum (ER) to plasma membrane through Golgi, and associated with the fates of various ligands for EGFR. Recent studies have clarified that the activation or downregulation of EGFR signaling pathways by alteration of iRhoms are connected to several human diseases including tylosis with esophageal cancer (TOC) which is the autosomal dominant syndrom, breast cancer, and Alzheimer's disease. Thus, this review focuses on our understanding of iRhoms and the involved mechanisms in the cellular processes.

Afatinib ameliorates osteoclast differentiation and function through downregulation of RANK signaling pathways

  • Ihn, Hye Jung;Kim, Ju Ang;Bae, Yong Chul;Shin, Hong-In;Baek, Moon-Chang;Park, Eui Kyun
    • BMB Reports
    • /
    • 제50권3호
    • /
    • pp.150-155
    • /
    • 2017
  • Non-small-cell lung cancer (NSCLC) is the third most common cancer that spreads to the bone, resulting in osteolytic lesions caused by hyperactivation of osteoclasts. Activating mutations in epidermal growth factor receptor-tyrosine kinase (EGF-TK) are frequently associated with NSCLC, and afatinib is a first-line therapeutic drug, irreversibly targeting EGF-TK. However, the effects of afatinib on osteoclast differentiation and activation as well as the underlying mechanism remain unclear. In this study, afatinib significantly suppressed receptor activator of nuclear factor ${\kappa}B$ (RANK) ligand (RANKL)-induced osteoclast formation in bone marrow macrophages (BMMs). Consistently, afatinib inhibited the expression of osteoclast marker genes, whereas, it upregulated the expression of negative modulator genes. The bone resorbing activity of osteoclasts was also abrogated by afatinib. In addition, afatinib significantly inhibited RANKL-mediated Akt/protein kinase B and c-Jun N-terminal kinase phosphorylation. These results suggest that afatinib substantially suppresses osteoclastogenesis by downregulating RANK signaling pathways, and thus may reduce osteolysis after bone metastasis.

Mechanistic insights into differential requirement of receptor dimerization for oncogenic activation of mutant EGFR and its clinical perspective

  • Cho, Jeonghee
    • BMB Reports
    • /
    • 제53권3호
    • /
    • pp.133-141
    • /
    • 2020
  • The epidermal growth factor receptor (EGFR), a member of the ErbB family (EGFR, ErbB2, ErbB3 and ErbB4), plays a crucial role in regulating various cellular responses such as proliferation, differentiation, and survival. As a result, aberrant activation of EGFR, mostly mediated through different classes of genomic alterations occurring within EGFR, is closely associated with the pathogenesis of numerous human cancers including lung adenocarcinoma, glioblastoma, and colorectal cancer. Thus, specific suppression of oncogenic activity of mutant EGFR with its targeted drugs has been routinely used in the clinic as a very effective anti-cancer strategy in treating a subset of tumors driven by such oncogenic EGFR mutants. However, the clinical efficacy of EGFR-targeted therapy does not last long due to several resistance mechanisms that emerge in the patients following the drug treatment. Thus, there is an urgent need for the development of novel therapeutic tactics specifically targeting mutant EGFR with the focus on the unique biological features of various mutant EGFR. Regarding this point, our review specifically emphasizes the recent findings about distinct requirements of receptor dimerization and autophosphorylation, which are critical steps for enzymatic activation of EGFR and signaling cascades, respectively, among wildtype and mutant EGFR and further discuss their clinical significance. In addition, the molecular mechanisms regulating EGFR dimerization and enzymatic activity by a key negative feedback inhibitor Mig6 as well as the clinical use for developing potential novel drugs targeting it are described in this review.

Isolation of RNA Aptamers Targeting HER-2-overexpressing Breast Cancer Cells Using Cell-SELEX

  • Kang, Hye-Suk;Huh, Yong-Min;Kim, So-Youn;Lee, Dong-ki
    • Bulletin of the Korean Chemical Society
    • /
    • 제30권8호
    • /
    • pp.1827-1831
    • /
    • 2009
  • Ligand molecules that can recognize and interact with cancer cell surface marker proteins with high affinity and specificity should greatly aid the development of novel cancer diagnostics and therapeutics. HER-2/ErbB2/Neu (HER-2), a member of the epidermal growth factor receptor family, is specifically overexpressed on the surface of breast cancer cells and serves as both a useful biomarker and a therapeutic target for breast cancer. In this study, we aimed to isolate RNA aptamers that specifically bind to a HER-2-overexpressing human breast cancer cell line, SK-BR-3, using Cell-SELEX strategy. The selected aptamers showed strong affinity to SK-BR-3, but not to MDAMB- 231, a HER-2-underexpressing breast cancer cell line. In addition, we confirmed the specific targeting of HER-2 receptor by aptamers using an unrelated mouse cell line overexpressing human HER-2 receptor. The HER-2-targeting RNA aptamers could become a useful reagent for the development of breast cancer diagnostics and therapeutics.

Dual effects of a CpG-DNAzyme targeting mutant EGFR transcripts in lung cancer cells: TLR9 activation and EGFR downregulation

  • Jang, Dahye;Baek, Yu Mi;Park, Hanna;Hwang, Yeo Eun;Kim, Dong-Eun
    • BMB Reports
    • /
    • 제51권1호
    • /
    • pp.27-32
    • /
    • 2018
  • Non-small-cell lung cancer (NSCLC) is commonly caused by a mutation in the epidermal growth factor receptor (EGFR) and subsequent aberrant EGFR signaling with uncontrolled kinase activity. A deletion mutation in EGFR exon 19 is frequently observed in EGFR gene mutations. We designed a DNAzyme to suppress the expression of mutant EGFR by cleaving the mutant EGFR mRNA. The DNAzyme (named Ex19del Dz) specifically cleaved target RNA and decreased cancer cell viability when transfected into gefitinib-resistant lung cancer cells harboring EGFR exon 19 deletions. The DNAzyme decreased EGFR expression and inhibited its downstream signaling pathway. In addition to EGFR downregulation, Ex19del Dz containing CpG sites activated Toll-like receptor 9 (TLR9) and its downstream signaling pathway via p38 kinase, causing an immunostimulatory effect on EGFR-mutated NSCLC cells. Thus, dual effects of this DNAzyme harboring the CpG site, such as TLR9 activation and EGFR downregulation, leads to apoptosis of EGFR-mutated NSCLC cells.

Mammary Paget's disease without underlying malignancy of the breast

  • Jang, Nuri;Kang, Suhwan;Bae, Young Kyung
    • Journal of Yeungnam Medical Science
    • /
    • 제35권1호
    • /
    • pp.99-103
    • /
    • 2018
  • Mammary Paget's disease (MPD) is usually accompanied by underlying breast malignancy; however, a few cases have been reported as only skin lesions without any evidence of malignancy of the breast on imaging tests and microscopic examination of surgical specimen. Here, we describe a 47-year-old woman who visited our hospital who had an eczematous lesion on right nipple and areola for over 10 years. The lesion was diagnosed as Paget's disease by punch biopsy; however, imaging studies demonstrated no breast malignancy or lymph node metastasis. The patient underwent surgery of on the nipple and areola including underlying breast tissue. No underlying malignancy was found upon microscopic examination, except for Paget's disease. Immunohistochemical stains revealed that the tumor cells were positive for cytokeratin 7, and negativity for p63, cytokeratin 5/6, estrogen receptor, progesterone receptor, and human epidermal growth factor receptor 2. We report a case of MPD without underlying malignancy. To the best of our knowledge, this is the third case reported in Korea.