• 제목/요약/키워드: Receiver shape

검색결과 85건 처리시간 0.026초

공기식 흡수기의 유동 방향에 따른 $5kW_t$급 접시형 태양열 집열기의 열성능 분석 (Thermal Performance of Air receiver with a Change of Flow direction for Dish Solar Collector)

  • 서주현;강경문;이주한;오상준;서태범
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2008년도 춘계학술대회 논문집
    • /
    • pp.182-185
    • /
    • 2008
  • The thermal performance of air receiver with a change of flow direction for dish solar collector. This system is installed and operated in Incheon, Korea. The thermal capacity of the system is about 5 kW thermal. The aperture diameter of the cylindrical-shape receiver which is made of stainless steel is 100 mm, and the height is 210 mm. Experiments are being carried out to investigate the thermal performance variation of the receivers with several design parameters such as the shape of the receiver, the flow directions and the flow rate of air. First, air flows into the upper part of the receiver, which is the opposite side of the aperture. After the air flows through the inside receiver, that goes out of the receiver through 3 exits which are located near the aperture. Second, air flows into the backside of the receiver, Which is the forward side of the aperture. After the air flows through the inside receiver, that goes out of the receiver through 1 exit. The results show that the system efficiency and receiver efficiency increase as the volume flow rate increases as expected.

  • PDF

고온용 히트파이프형 태양열 흡수기 (High-Temperature Heat-Pipe Type Solar Thermal Receiver)

  • 부준홍;정의국
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2007년도 춘계학술대회
    • /
    • pp.668-671
    • /
    • 2007
  • A numerical study was conducted on a simplified model of a high-temperature solar receiver which incorporates liquid-metal heat pipe. The objective of this paper is to compare the isothermal characteristics of the heat pipe receiver with the conventional receiver utilizing convection of molten salt as heat carrier. The solar receiver was assumed to be subject to a concentration ratio between 50 and 1,000 to supply high-temperature heat to a stirling engine for electric power generation. For simplicity of the analysis, a cylindrical geometry was assumed and typical dimensions were used based on available literature. The heat pipe had a shape of double-walled cavity and the working fluid was a sodium. The analysis was performed assuming that the radiation heat flux on the inner walls of the receiver was uniform, since the focus of this study was laid on the comparison of the conventional type and heat pipe type receiver. The results showed that the heat pipe type exhibited superior performance when the operating temperature becomes higher. In addition, to explore the advantage of the heat pipe receiver, the channel shape and dimensions should be adjusted to increase the heat transfer area between the wall and the heat trnasfer medium.

  • PDF

Shape-Based Classification of Clustered Microcalcifications in Digitized Mammograms

  • Kim, J.K.;Park, J.M.;Song, K.S.;Park, H.W.
    • 대한의용생체공학회:의공학회지
    • /
    • 제21권2호
    • /
    • pp.137-144
    • /
    • 2000
  • Clustered microcalcifications in X-ray mammograms are an important sign for the diagnosis of breast cancer. A shape-based method, which is based on the morphological features of clustered microcalcifications, is proposed for classifying clustered microcalcifications into benign or malignant categories. To verify the effectiveness of the proposed shape features, clinical mammograms were used to compare the classification performance of the proposed shape features with those of conventional textural features, such as the spatial gray-leve dependence method and the wavelet-based method. Image features extracted from these methods were used as inputs to a three-layer backpropagation neural network classifier. The classification performance of features extracted by each method was studied by using receiver operating-characteristics analysis. The proposed shape features were shown to be superior to the conventional textural features with respect to classification accuracy.

  • PDF

On the Design of Orthogonal Pulse-Shape Modulation for UWB Systems Using Hermite Pulses

  • Giuseppe, Thadeu Freitas de Abreu;Mitchell, Craig-John;Kohno, Ryuji
    • Journal of Communications and Networks
    • /
    • 제5권4호
    • /
    • pp.328-343
    • /
    • 2003
  • Orthogonal pulse-shape modulation using Hermite pulses for ultra-wideband communications is reviewed. Closedform expressions of cross-correlations among Hermite pulses and their corresponding transmit and receive waveforms are provided. These show that the pulses lose orthogonality at the receiver in the presence of differentiating antennas. Using these expressions, an algebraic model is established based on the projections of distorted receive waveforms onto the orthonormal basis given by the set of normalized orthogonal Hermite pulses. Using this new matrix model, a number of pulse-shape modulation schemes are analyzed and a novel orthogonal design is proposed. In the proposed orthogonal design, transmit waveforms are constructed as combinations of elementary Hermites with weighting coefficients derived by employing the Gram-Schmidt (QR) factorization of the differentiating distortion model’s matrix. The design ensures orthogonality of the vectors at the output of the receiver bank of correlators, without requiring compensation for the distortion introduced by the antennas. In addition, a new set of elementary Hermite Pulses is proposed which further enhances the performance of the new design while enabling a simplified hardware implementation.

Estimation of Heat Losses From the Receivers for Solar Energy Collecting System of Korea Institute of Energy Research

  • Ryu, Siyoul;Seo, Taebeom
    • Journal of Mechanical Science and Technology
    • /
    • 제14권12호
    • /
    • pp.1403-1411
    • /
    • 2000
  • Heat losses from the receivers for a dish-type solar energy collecting system constructed at Korea Institute of Energy Research are analyzed. The Stine and McDonald's model is used to estimate the convection loss. The Net Radiation method and the Monte-Carlo method are used to calculate the radiation heat transfer rate from the inside surface of the receiver to the surroundings. Two different receivers are suggested here and the performances of the receivers are estimated and compared with each other based on the prediction of the amount of heat losses from the receivers. The effects of the receiver shape and the radiation properties of the surface on the thermal performance are investigated. The performance of Receiver I is better than that of Receiver II, and the amount of solar irradiation that is not captured by the captured by the receiver after being reflected by the concentrator becomes significant if the temperature of the working fluid is low.

  • PDF

태양열 발전용 스터링엔진 흡수기 특성연구 (Study of Stirling Engine Receiver for Solar Thermal Power)

  • 김종규;이상남;강용혁
    • 한국태양에너지학회:학술대회논문집
    • /
    • 한국태양에너지학회 2008년도 춘계학술발표대회 논문집
    • /
    • pp.227-232
    • /
    • 2008
  • Stirling engine for solar thermal power is an essential part of Dish-Stirling system which generates electricity by using direct normal irradiation and will go into commercialization in near future. For the Stirling engine used in this study is Solo 161 model the capacity of which is 10 kWe and was already used for the Dish-Stirling system of KIER in Jinhae. The receiver of Stirling engine absorbes concentrated solar radiation and transfer it to working fluid of Hydrogen. The working condition of striling engine is high temperature and high pressure to make high efficiency. Therefore the receiver should stand against high temperature of above 800 $^{\circ}C$ and high pressure of max. 150 bar with good performance of heat transfer. The receiver is composed of 78 Inconel tubes of 1/8" with thickness of 0.71 mm and two reserviors which is connected with two cylinders. In order to know the charaterristics of heat transfer of Stirling engine receiver, simulation on the heat transfer of the receiver of Solo 161 is conducted by using CFD code of Fluent. The heat flux on the receiver surface has a shape of Gaussian distribution so, it is necessary to simulate a whole receiver. However, It is difficult and time consuming to simulate the whole receiver that one tube with different heat flux conditions are considered in this study. From the simulation results, heat transfer charateristics of receiver are observed and tube wall and fluid temperature and heat transfer coefficient are obtained and compared with the calculated results from Dittus-Boelter's correlation.

  • PDF

반사경 배치 및 흡수기 형상에 따른 접시형 태양열 집열기의 열손실 해석 (Analysis of Heat Loss with Mirror Array and Receiver Shapes on the Dish Solar Collector)

  • 서주현;마대성;김용;강용혁;서태범
    • 설비공학논문집
    • /
    • 제20권1호
    • /
    • pp.35-41
    • /
    • 2008
  • The radiative heat loss from a receiver of a dish solar collector is numerically investigated. The dish solar collector considered in this paper consists of a receiver and multi-faceted mirrors. In order to investigate the performance comparison of dish solar collectors, six different mirror arrays and four different receivers are considered. A parabolic- shaped perfect mirror of which diameter is 1.40 m is considered as the reference for the mirror arrays. The other mirror arrays which consist of twelve identical parabolic-shaped mirror facets of which diameter are 0.405 m are suggested for comparison. Their reflecting areas, which are 1.545 $m^{2}$, are the same. Four different receiver shapes are a conical, a dome, a cylindrical, and a unicorn type. The radiative properties of the mirror surfaces and the receiver surfaces may vary the thermal performance of the dish solar collector so that various surface properties are considered. In order to calculate the radiative heat loss in the receiver, two kinds of methods are used. The Net Radiation Method that is based on the radiation heat balance on the surface is used to calculate the radiation heat transfer rate from the inside surface of the receiver to the environment. The Monte-Carlo Method that is the statistical approach is adopted to predict the radiation heat transfer rate from the reflector to the receiver. The collector efficiency is defined as the results of the optical efficiency and the receiver efficiency. Based on the calculation, the unicorn type has the best performance in receiver shapes and the STAR has the best performance in mirror arrays except the perfect mirror.

수치모델을 이용한 고온 태양열 집열기의 열성능 분석 (Characteristic of a Spiral type Receiver for a Dish type solar thermal system using a Numerical model)

  • 김태준;김재익;이진규;이주한;서태범
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2009년도 하계학술발표대회 논문집
    • /
    • pp.786-791
    • /
    • 2009
  • This study focus on verification of the thermal efficiency of volumetric air receiver with $5kW_{th}$ Dish-type solar thermal system for high temperature uses by using numerical analysis compare with experimental data including shape change of absorber, direction of inlet and outlet. Porous material for radiation-thermal conversion used in former researches are substituted with the stainless steel wall installed along the spiral shaped flow path. Temperature variation and the flow change at the inside of the absorber has been analyzed by Star-ccm+ Version 3.02. Using the numerical model, the heat transfer characteristics of spiral type receiver for dish-type solar thermal systems are known and the thermal performance of the receiver can be estimated.

  • PDF

GPS 방송 궤도력 이상의 특성 분석 (An Analysis on Characteristics of Abnormal Broadcast GPS Ephemeris)

  • 이제영;김희성;이형근
    • 한국항행학회논문지
    • /
    • 제14권5호
    • /
    • pp.610-617
    • /
    • 2010
  • 본 논문에서는 GPS 위성의 방송 궤도력 이상의 특성에 관하여 위성의 위치오차와 위성과 수신기 간 거리오차의 비교를 통해 분석하였다. 방송 궤도력 이상이 수신기의 위치 추정치에 미치는 영향은 위치오차에 의해 유발되는 거리오차와 밀접한 관련을 갖는다. 또한 거리오차는 위성 위치오차의 방향과 시선각 벡터의 방향에 의해 결정된다. 따라서 방송 궤도력 이상의 특성을 분석하기 위하여 방송 궤도력 각 변수를 위성 궤도의 크기와 모양을 결정하는 변수, 위성 궤도의 기울기를 결정하는 변수, 궤도에서의 위성의 위치를 결정하는 변수들로 분류하였다. 분류된 변수들의 특징을 바탕으로 위치변화가 수신기 위치 추정치에 미치는 영향을 분석하였다.

공간-주파수 블록코드를 이용한 OFDM의 성능분석 (Performance Analysis of OFDM using Space-Frequency Block Code)

  • 황운택
    • 한국정보통신학회논문지
    • /
    • 제14권5호
    • /
    • pp.1064-1070
    • /
    • 2010
  • 본 논문에서는 무선통신시스템에서 주파수 자원을 추가적으로 사용하지 않고 주파수 선택적 특성에 따른 간섭을 극복할 수 있는 선형 수신기와 간섭 제기를 제안하였고, 채널 추정 오차가 있는 보다 실제적인 상황에서 결과들을 분석하였다. 주파수 선택적 특성이 강해 간섭량이 큰 상황에서는 MMSE 선형 수신기와 간섭제거기를 함께 사용한 경우 Conventional 공간-주파수 블럭코드 수신기에 비해 월등한 성능 향상이 있었다. 채널 추정 오차가 작은 경우에는 (MSE=0.001) $BER=2{\times}10^{-3}$에서 7dB의 성능이득이 있었다.