• Title/Summary/Keyword: Receiver Systems

Search Result 1,455, Processing Time 0.028 seconds

Fault Detection and Isolation for Inertial Sensor Using Single Antenna GPS Receiver (단일 안테나 GPS 수신기를 이용한 관성센서의 고장검출 및 분리)

  • 김영진;김유단
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.10 no.11
    • /
    • pp.1037-1043
    • /
    • 2004
  • In this paper, a new fault detection and isolation algorithm fur inertial sensor system is proposed. To identify the inertial sensor fault, single antenna GPS receiver is used as an effective redundancy source. To use GPS receiver as redundancy for the inertial sensors, the algorithm to estimate the attitude and acceleration using single antenna GPS receiver is adopted. By using Doppler shift of carrier phase signal and kinetic characteristics of aircraft, attitude information of aircraft can be obtained at the coordinated flight condition. Based on this idea, fault diagnosis algorithm for inertial sensors using single antenna GPS based attitude is proposed. For more effective FDI, decision variables considering the aircraft maneuver are proposed. The effectiveness of the proposed algorithm is verified through the numerical simulations.

Performance Analysis of Chained Amplifier Systems for Metropolitan Optical Network Applications

  • Lee, Jong-Hyung;Choi, Byeong-Yoon
    • Journal of information and communication convergence engineering
    • /
    • v.7 no.3
    • /
    • pp.377-382
    • /
    • 2009
  • In this paper, theoretical analysis for metropolitan optical networks is performed. First, analytical optical SNR is derived assuming each node consists of an EDFA, an optical filter, an optical switch, and a VOA, and then the relationship between OSNR and BER is studied. In a metropolitan optical network, an optical signal can be dropped to deliver data, and we also studied the effect of drop loss on system performance. When the drop loss is relatively small, the receiver structure of the node can be treated as a preamplifier receiver which is widely used in long-haul systems. In that case, ASE noise from EDFAs is the dominant noise source in the receiver. However, system performance is relatively insensitive to OSNR when the drop loss is significant because of the noise sources in the receiver (thermal and shot noise).

Development of an Integrated Optic Transmitter/Deceiver based on Ring-type WDM PON (링형 WDM PON 기반 통합 광송수신기 개발)

  • Park, Young-Ho;Kim, Cheol-Su
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.12 no.4
    • /
    • pp.148-152
    • /
    • 2007
  • This paper develops an integrated optic transmitter/receiver based on ring-type WDM PON. The optic transmitter/receiver can transmit real-time images from the CCTV of a remote street without compression and transmit TCP/IP data using an optic fiber. This system can also perform remote controls of the CCTV camera. The developed optic transmitter/receiver can provide the monitoring service of an advanced image quality of remote traffic using a broadband technology.

  • PDF

Computational Heat Transfer Analysis of High Temperature Solar Receiver (수치해석기법을 이용한 고온태양열 흡수기의 열성능 분석)

  • Kim, Tae-Jun;Oh, Sang-June;Lee, Jin-Gyu;Seo, Tae-Beom
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2009.04a
    • /
    • pp.49-54
    • /
    • 2009
  • This study focus on verification of the thermal efficiency of volumetric receiver with $5kW_{th}$ Dish-type solar thermal system. Spiral flow path shaped on receiver and working fluid(steam) flow along the this flow path. Porous material for radiation-thermal conversion used in former researches are substituted with the stainless steel wall installed along the spiral shaped flow path. Numerical analysis for the flow path and temperature distributions are carried out. Numerical results are compared with experimental data. Using the numerical model, the heat transfer characteristics of spiral type receiver for dish-type solar thermal systems are known and the thermal performance of the receiver can be estimated.

  • PDF

Analysis of Transient Heat Transfer Characteristics of Dish-Type Solar Receiver System (접시형 태양열 흡수기의 Transient 열전달 특성에 대한 수치해석 연구)

  • Lee, Ju-Han;Seo, Joo-Hyun;Oh, Sang-June;Lee, Jin-Kyu;Seo, Tae-Beom
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2094-2099
    • /
    • 2008
  • A numerical and experimental studies are carried out to investigate the transient heat transfer characteristics of 5kWth dish-type solar air receiver. Measured solar radiation and temperatures at several different locations are used as boundary conditions for numerical simulation. Many parameters' effects (reflectivity of the reflector, the thermal conductivity of the receiver body, transmissivity of the quartz window, etc.) on the thermal performance are investigated. Discrete Transfer Method is used to calculate the radiation heat exchange in the receiver. A transient heat transfer model is developed and the rate of radiation, convection and conduction heat transfer are calculated. Comparing the experimental and numerical results, good agreement is obtained. Using the numerical model, the transient heat transfer characteristics of volumetric air receiver for dish-type solar thermal systems are known and the transient thermal performance of the receiver can be estimated.

  • PDF

Estimation of the Relative GPS/Galileo Satellite and Receiver IFBs using a Kalman Filter in a Regional Receiver Network (지역적 수신기 네트워크에서 Kalman 필터를 사용한 상대적인 GPS/Galileo 위성 및 수신기 IFB 추정)

  • Heesung Kim;Minhyuk Son
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.13 no.3
    • /
    • pp.309-317
    • /
    • 2024
  • Satellite and receiver Inter-Frequency Biases (IFBs) should be estimated or calibrated by pre-defined values for generating precise navigation messages and augmentation data in satellite navigation systems or the augmentation system. In this paper, a Kalman filter is designed and implemented to estimate the ionospheric delay and satellite/receiver IFBs using a regional receiver network. First, an ionospheric model and its filter parameter is defined based on previous studies. Second, a measurement model for estimating the relative satellite/receiver IFBs without any constraints is proposed. Third, a procedure for ensuring the continuity of estimation is proposed in this paper. To verify the performance of the designed filter, six Continuously Operating Reference Stations (CORSs) are selected. Finally, the stability and accuracy of satellite/receiver IFB estimation are analyzed.

Implementation and Performance Analysis of the Single Channel Monopulse System (단일채널 모노펄스시스템의 구현 및 성능 검증)

  • Kang, Byoung-Wook;Kwon, Hyuk-Ja;Lee, Young-Jin
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.27 no.10
    • /
    • pp.900-908
    • /
    • 2016
  • In this paper, we have studied the tracking system with a single channel monopulse receiver that has a comparative advantage of costs, size, weight, and power consumption over the general 3-channel monopulse receivers. After the single channel monopulse system was composed of an antenna, a monopulse receiver, a servo unit, a RF signal processor unit and a power supply unit, we analyzed the basic tracking performance of the tracking error angle and the pointing loss. And we proved the tracking performance to a moving target in the outdoor environment. On the Analysis of the tracking test results, the single channel monopulse system shows a equal or higher performance over the general 3-channel monopulse system and also has advantages of the system implementation. Also, it is concluded that this study is useful to apply a single channel monopulse receiver with benefits of production price and miniaturization when the monopulse tracking systems will be developed in the future.

Rejection of Interference Signal Using Neural Network in Multi-path Channel Systems (다중 경로 채널 시스템에서 신경회로망을 이용한 간섭 신호 제거)

  • 석경휴
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • 1998.06c
    • /
    • pp.357-360
    • /
    • 1998
  • DS/CDMA system rejected narrow-band interference and additional White Gaussian noise which are occured at multipath, intentional jammer and multiuser to share same bandwidth in mobile communication systems. Because of having not sufficiently obtained processing gain which is related to system performance, they were not effectively suppressed. In this paper, an matched filter channel model using backpropagation neural network based on complex multilayer perceptron is presented for suppressing interference of narrow-band of direct sequence spread spectrum receiver in DS/CDMA mobile communication systems. Recursive least square backpropagation algorithm with backpropagation error is used for fast convergence and better performance in matched filter receiver scheme. According to signal noise ratio and transmission power ratio, computer simulation results show that bit error ratio of matched filter using backpropagation neural network improved than that of RAKE receiver of direct sequence spread spectrum considering of con-channel and narrow-band interference.

  • PDF

Design of a Module for Oscillation Detection in an Integrated PCS and W-CDMA Receiver

  • Park Joung-Geun;Lee Jong-Chul
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.4 no.1 s.6
    • /
    • pp.73-79
    • /
    • 2005
  • In this paper, a circuit for detecting a fine oscillation in an integrated PCS and W-CDMA receiver is presented. The advantages for this design are small size and flexible compatibility for system operation compared with the conventional method. The fine oscillation level can be detected by dB unit through selecting the receiver mode as PCS of 1.8 GHz range or W CDMA of 1.9 GHz range by a RF switch and monitoring the corresponding frequency band. Also, the circuit is designed to be flexible for other communication systems with the consideration of the required dynamic range of 75 dB.

  • PDF

Performance Analysis of LR-aided ZF Receiver for MIMO Systems

  • Kim, Sangchoon
    • International journal of advanced smart convergence
    • /
    • v.7 no.3
    • /
    • pp.37-43
    • /
    • 2018
  • Lattice-reduction (LR) techniques have been developed for signal detection in spatial multiplexing multiple input multiple output (MIMO) systems to obtain the largest diversity gain. Thus, an LR-assisted zero-forcing (ZF) receiver can achieve the maximum diversity gain in spatial multiplexing MIMO systems. In this paper, a simplified analysis of the achievable diversity gain is presented by fitting the channel coefficients lattice-reduced by a complex Lenstra-Lenstra-$Lov{\acute{a}}z$ (LLL) algorithm into approximated Gaussian random variables. It will be shown that the maximum diversity gain corresponding to two times the number of receive antennas can be achieved by the LR-based ZF detector. In addition, the approximated bit error rate (BER) expression is also derived. Finally, the analytical BER performance is comparatively studied with the simulated results.