• Title/Summary/Keyword: Receiver Complexity

Search Result 314, Processing Time 0.021 seconds

Performance Evaluation of Channel Estimation for WCDMA Forward Link with Space-Time Block Coding Transmit Diversity (시공간 블록 부호 송신 다이버시티를 적용한 WCDMA 하향 링크에서 채널 추정기의 성능 평가)

  • 강형욱;이영용;김용석;최형진
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.28 no.6A
    • /
    • pp.341-350
    • /
    • 2003
  • In this paper, we evaluate the performance of a moving average (MA) channel estimation filter when space-time block coding transmit diversity (STBC-TD) is applied to the wideband direct sequence code division multiple access (WCDMA) forward link. And we present the infinite impulse response (IIR) filter scheme that can reduce the required memory buffer and the channel estimation delay time. This paper also compares the performance between MA filter scheme and IIR filter scheme in various Rayleigh fading channel environments through the bit error rate (BER) and the frame error rate (FER). Extensive computer simulation results show that transmission with STBC-TD provides a significant gain in performance over no transmit diversity technique, particularly at pedestrian speeds. If STBC-TD technique is employed in the channel estimator based on MA filter, it provides considerable performance gains against Rayleigh fading and reduces the optimum filter tap number. Consequently, the channel estimation delay time and the complexity of the receiver are reduced. In addition, the channel estimator based on IIR filter has the advantages such as little memory requirement and no delay time compared to the MA scheme. However, IIR filter coefficients is very sensitive to the mobile speed change and it exerts a serious influence upon the performance. For that reason, it is important to set uP the optimum IIR filter coefficients.

On Adaptive Narrowband Interference Cancellers for Direct-Sequence Spread-Spectrum Communication Systems (주파수대역 직접 확산 통신시스템에서 협대역 간섭 신호 제거를 위한 적응 간섭제거기에 관한 연구)

  • 장원석;이재천
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.28 no.10C
    • /
    • pp.967-983
    • /
    • 2003
  • In wireless spread-spectrum communication systems utilizing PN (pseudo noise) sequences, a variety of noise sources from the channel affect the data reception performance. Among them, in this paper we are concerned with the narrowband interference that may arise from the use of the spectral bands overlapped by the existing narrowband users or the intentional jammers as in military communication. The effect of this interference can be reduced to some extent at the receiver with the PN demodulation by processing gain. It is known, however, that when the interferers are strong, the reduction cannot be sufficient and thereby requiring the extra use of narrowband interference cancellers (NIC's) at the receivers. A class of adaptive NIC's are studied here based on different two cost functions. One is the chip mean-squared error (MSE) computed prior to the PN demodulation and used in the conventional cancellers. Since thses conventional cancellers should be operated at the chip rate, the computational requirements are enormous. The other is the symbol MSE computed after the PN demodulation in which case the weights of the NIC's can be updated at a lot lower symbol rate. To compare the performance of these NIC's, we derive a common measure of performance, i.e., the symbol MSE after the PN demodulation. The analytical results are verified by computer simulation. As a result, it is shown that the cancellation capability of the symbol-rate NIC's are similar or better than the conventional one while the computational complexity can be reduced a lot.

PAPR Reduction Method of OFDM System Using Fuzzy Theory (Fuzzy 이론을 이용한 OFDM 시스템에서 PAPR 감소 기법)

  • Lee, Dong-Ho;Choi, Jung-Hun;Kim, Nam;Lee, Bong-Woon
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.21 no.7
    • /
    • pp.715-725
    • /
    • 2010
  • Orthgonal Frequency Division Multiplexing(OFDM) system is effective for the high data rate transmission in the frequency selective fading channel. In this paper we propose PAPR(Peak to Average Power Ratio) reduction method of problem in OFDM system used Fuzzy theory that often control machine. This thesis proposes PAPR reducing method of OFDM system using Fuzzy theory. The advantages for using Fuzzy theory to reduce PAPR are that it is easy to manage the data and embody the hardware, and required smaller amount of operation. Firstly, we proposed simple algorithm that is reconstructed at receiver with transmitted overall PAPR which is reduced PAPR of sub-block using Fuzzy. Although there are some drawbacks that the operation of the system is increased comparing conventional OFDM system and it is needed to send the information about Fuzzy indivisually, it is assured that the performance of the system is enhanced for PAPR reducing. To evaluate the perfomance, the proposed search algorithm is compared with the proposed algorithm in terms of the complementary cumulative distribution function(CCDF) of the PAPR and the computational complexity. As a result of using the QPSK and 16QAM modulation, Fuzzy theory method is more an effective method of reducing 2.3 dB and 3.1 dB PAPR than exiting OFDM system when FFT size(N)=512, and oversampling=4 in the base PR of $10^{-5}$.

Cell ID Detection Schemes Using PSS/SSS for 5G NR System (5G NR 시스템에서 PSS/SSS를 이용한 Cell ID 검출 방법)

  • Ahn, Haesung;Kim, Hyeongseok;Cha, Eunyoung;Kim, Jeongchang
    • Journal of Broadcast Engineering
    • /
    • v.25 no.6
    • /
    • pp.870-881
    • /
    • 2020
  • This paper presents cell ID (cell identity) detection schemes using PSS/SSS (primary synchronization signal/secondary synchronization signal) for 5G NR (new radio) system and evaluates the detection performance. In this paper, we consider two cell ID detection schemes, i.e. two-stage detection and joint detection schemes. The two-stage detection scheme consists of two stages which estimate a channel gain between a transmitter and receiver and detect the PSS and SSS sequences. The joint detection scheme jointly detects the PSS and SSS sequences. In addition, this paper presents coherent and non-coherent combining schemes. The coherent scheme calculates the correlation value for the total length of the given PSS and SSS sequences, and the non-coherent combining scheme calculates the correlation within each group by dividing the total length of the sequence into several groups and then combines them non-coherently. For the detection schemes considered in this paper, the detection error rates of PSS, SSS and overall cell ID are evaluated and compared through computer simulations. The simulation results show that the joint detection scheme outperforms the two-stage detection scheme for both coherent and non-coherent combining schemes, but the two-stage detection scheme can greatly reduce the computational complexity compared to the joint detection scheme. In addition, the non-coherent combining detection scheme shows better performance under the additive white Gaussian noise (AWGN), fixed, and mobile environments.