• Title/Summary/Keyword: Received light intensity

Search Result 26, Processing Time 0.034 seconds

Estimation Algorithm of Receiver's Position and Angle Based on Tracking of Received Light Intensity for Indoor Visible Light Communication Systems (실내 가시광 무선 통신 시스템의 수신 광도 변화 추적 기반 단말기 위치 및 수신각 추정 알고리즘)

  • Hwang, Jun-Ho;Lee, Ji-Soo;Yoo, Myung-Sik
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.48 no.3
    • /
    • pp.60-67
    • /
    • 2011
  • Visible light communication system transmits data by controlling light emission of LED and receives data through photo detecter, which is considered as one of strong candidates of next generation wireless communication systems. The transmission capacity of visible light communication system depends on light intensity emitted from LED, sensitivity of PD, distance between transmitter and receiver, angle of incidence at the receiver. In particular, the receiver's vertical and horizontal movement changes distance between transmitter and receiver and angle of incidence, which may degrades transmission capacity of system. In this paper, we propose an estimation algorithm of receiver's position and angle based on tracking of received light intensity for indoor visible light communication systems. The performance evaluation of proposed algorithm confirms that the estimation algorithm of receiver's position and angle is quite important for visible light communication system to improve its transmission capacity.

Optical Gain Measuring System in the Laser Discharge using Feedback Light (귀환광을 이용한 레이저방전내의 광이득 측정시스템)

  • Choi, Sang-Tae
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.25 no.7
    • /
    • pp.9-14
    • /
    • 2011
  • A spectroscopic measuring system was developed in order to determine optical gain of gas laser discharge for any optical transitions between 190[nm] and 800[nm] without laser resonator. With an image optical system and a feedback optical system emission light of laser discharge are entered in a monochromator and received at a photomultiplier. Subsequently optical gain and line intensity are measured.

Effects of Soil Moisture on the Growth of Acer Palmatum under Indoor Low Light Intensity (실내의 저광도하에서 토양수분이 단풍나무의 생육에 미치는 영향)

  • 윤지영;김민수
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.28 no.4
    • /
    • pp.21-28
    • /
    • 2000
  • This study is conducted to analyze effects of soil moisture on the growth of maple(Acer palmatum) under indoor low light intensity. Maples grew under three different light intensities such as sunny place(average 353.2W/$m^2$), half shade(average 7.7 W/$m^2$) and shade/(average 1.9W/$m^2$).Under half shady and shady condition, each 24 planters(2 maples planted in each planter) were used and divided into 3 groups treated with different watering points. Three levels of soil water potential were set for watering points, such as -200mbar, -300mbar or -500mbar. Under sunny condition, there were only group of 8 planters, as comparison. Watering was applied when soil water potentials reached -500maber. The results of plant growth experiment are as followed. 1. Under the shady condition, 32 maples died among 48 maples for 7 months. 9 maples survived, watered at soil water potential -200mbar, 5maples at -300mbar and 2maples at -500mbar. 2. Leaf water content ratios were higher under lower light intensity. For the cell wall became thinner under lower light intensity. 3. Maples in shady were easy to die due to having thin cell wall, therefore they were easy to loss the turgor pressure. 4. In case of half shady condition, the group, watered at soil water potential -200mbar, had much smaller amount of rootlet than -300mbar, because there were excessive soil water. The group, watered at soil water potential -500mbar, had smaller amount of rootlet than -300mbar and there was a remarkable difference in leaf water potential in spite of nearly same soil water potential, because leaves received the water stress under lower soil water potential. 5. When maples grew soundly, the leaf water potential was largely influenced by the soil water potential.

  • PDF

Performance Analysis of Indoor/Outdoor Visible Light Communication System Influenced by External Noise Light (외부광잡음에 의한 실내외 가시광 무선통신 성능 변화 분석)

  • Yang, Se-Hoon;Kim, Deok-Rae;Kim, Hyun-Seung;Son, Yong-Hwan;Han, Sang-Kook
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.12B
    • /
    • pp.1595-1600
    • /
    • 2011
  • We analyzed the noise effect from artificial light and sunlight on the signal performance in visible light communication systems based on Intensity Modulation/Direct Detection(IM/DD). System performance was experimentally demonstrated by transmitting 50ksysmbol/s QPSK signals at 2MHz sub-carrier. And received signals were analyzed using EVM and RF spectrum. Finally, the system performance was improved by utilizing a visor and we confirm that the outdoor visible light communication was possible using IM/DD method.

Space-selective Precipitation and Control of Functional Crystals in Glasses by a Femtosecond Laser

  • Qiu, Jianrong;Zhu, Bin;Dai, Ye
    • Ceramist
    • /
    • v.10 no.3
    • /
    • pp.91-97
    • /
    • 2007
  • Femtosecond laser micro-processing received much attention in the past decade. The nature of ultra-short light-matter interaction permits femtosecond laser to overcome the diffraction limit and realize precise micro-processing. The ultrahigh light intensity of the femtosecond laser allows sapece-selective microscopic modifications to materials based on multiphoton processes. In this paper, we review our recent research development on space-selective precipitation and control of functional crystals in glasses by an infrared femtosecond laser. The technique will open new possibilities in the fabrication of micro-optical components with various optical functions.

  • PDF

Evaluation on the lighting performance of a dynamic LED lighting system (동적 LED 시스템의 조명원적 성능분석)

  • Kim, Hyo-In;Kim, Jeong-Tai;Yun, Geun-Young
    • Journal of the Korean Solar Energy Society
    • /
    • v.31 no.2
    • /
    • pp.113-119
    • /
    • 2011
  • LED lighting has received much attention in recent years due to its high energy efficiency and environmental friendliness. As the color of light can be obtained by adjusting the light intensity of LEDs, the quality of visual environment can be improved. The aims of this study are to develop a wavelength adjustable LED lighting system and to examine its lighting performances. The LED lighting system and experimental cell for assessment of the lighting performance were constructed. This LED lighting system is able to materialize the various spectral power distribution and color temperature of light through the control of the four dimmers. Up to $432^4$ kinds of light combinations are possible. The range of illuminance on workplane were measured as 7~1,831 ㏓. Improvement of psychological and physical functions for occupants can be expected according to control of lighting performances.

The Analysis of Effects of LED Panel Position and Lighting Angle on Communication Channel Quality in Indoor Visible Light Communication Systems (살내 가시광 무선 통신 시스템에서 LED 패널 위치 및 발광 각도가 통신 채널 품질에 미치는 영향 분석)

  • Do, Tronghop;Hwang, Jun-Ho;Yoo, Myung-Sik
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.9B
    • /
    • pp.1108-1116
    • /
    • 2011
  • The visible light communication system that transmits data by controlling light emission of LED and receives data through photo detecter is considered as one of the strong candidates of the next generation wireless communication systems. The visible light communication provides both lighting and wireless communication wherever the LED lamps are installed. Due to the feature of visible light communication system, the communication is possible within the area that LED light reaches, and the communication quality depends on the light intensity received at the receiver. In this paper, we analyze the effects of LED panel position and lighting angel on communication channel quality in visible light communication systems. Through computer simulations, we prove that position of LED panel and light angle have a great impact on illuminance and SNR of the visible light communication systems.

A study on 3-D indoor localization based on visible-light communication considering the inclination and azimuth of the receiver (수신기의 기울기 및 방위를 고려한 가시광 통신기반 3차원 실내 위치인식에 대한 연구)

  • Kim, Won-Yeol;Zin, Hyeon-Cheol;Kim, Jong-Chan;Noh, Duck-Soo;Seo, Dong-Hoan
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.40 no.7
    • /
    • pp.647-654
    • /
    • 2016
  • Indoor localization based on visible-light communication using the received signal strength intensity (RSSI) has been widely studied because of its high accuracy compared with other wireless localization methods. However, because the RSSI can vary according to the inclination and azimuth of the receiver, a large error can occur, even at the same position. In this paper, we propose a visible-light communication-based 3-D indoor positioning algorithm using the Gauss-Newton technique in order to reduce the errors caused by the change in the inclination of the receiver. The proposed system reduces the amount of computations by selecting the initial position of the receiver through the linear least-squares method (LSM), which is applied to the RSSIs, and improves the position accuracy by applying the Gauss-Newton technique to the 3-D nonlinear model that contains the RSSIs acquired by the changes in the azimuth and inclination of the receiver. In order to verify the validity of the proposed algorithm in an indoor space with dimensions of $6{\times}6{\times}3m$ where 16 LED lights are installed, we compare and analyze the errors of the conventional linear LSM-based trilateration technique and the proposed algorithm according to the changes in the inclination and azimuth of the receiver. The experimental results show that the location accuracy of the proposed algorithm is improved by 82.5% compared to the conventional LSM-based trilateration technique.

OPTICAL MULTI-CHANNEL INTENSITY INTERFEROMETRY - OR: HOW TO RESOLVE O-STARS IN THE MAGELLANIC CLOUDS

  • Trippe, Sascha;Kim, Jae-Young;Lee, Bangwon;Choi, Changsu;Oh, Junghwan;Lee, Taeseok;Yoon, Sung-Chul;Im, Myungshin;Park, Yong-Sun
    • Journal of The Korean Astronomical Society
    • /
    • v.47 no.6
    • /
    • pp.235-253
    • /
    • 2014
  • Intensity interferometry, based on the Hanbury Brown-Twiss effect, is a simple and inexpensive method for optical interferometry at microarcsecond angular resolutions; its use in astronomy was abandoned in the 1970s because of low sensitivity. Motivated by recent technical developments, we argue that the sensitivity of large modern intensity interferometers can be improved by factors up to approximately 25 000, corresponding to 11 photometric magnitudes, compared to the pioneering Narrabri Stellar Interferometer. This is made possible by (i) using avalanche photodiodes (APD) as light detectors, (ii) distributing the light received from the source over multiple independent spectral channels, and (iii) use of arrays composed of multiple large light collectors. Our approach permits the construction of large (with baselines ranging from few kilometers to intercontinental distances) optical interferometers at the cost of (very) long-baseline radio interferometers. Realistic intensity interferometer designs are able to achieve limiting R-band magnitudes as good as $m_R{\approx}14$, sufficient for spatially resolved observations of main-sequence O-type stars in the Magellanic Clouds. Multi-channel intensity interferometers can address a wide variety of science cases: (i) linear radii, effective temperatures, and luminosities of stars, via direct measurements of stellar angular sizes; (ii) mass-radius relationships of compact stellar remnants, via direct measurements of the angular sizes of white dwarfs; (iii) stellar rotation, via observations of rotation flattening and surface gravity darkening; (iv) stellar convection and the interaction of stellar photospheres and magnetic fields, via observations of dark and bright starspots; (v) the structure and evolution of multiple stars, via mapping of the companion stars and of accretion flows in interacting binaries; (vi) direct measurements of interstellar distances, derived from angular diameters of stars or via the interferometric Baade-Wesselink method; (vii) the physics of gas accretion onto supermassive black holes, via resolved observations of the central engines of luminous active galactic nuclei; and (viii) calibration of amplitude interferometers by providing a sample of calibrator stars.

Measurement of sonoluminescence intensity for evaluation of the amount of radical generated by ultrasonic cavitation (초음파 캐비테이션에 의해 생성되는 라디칼의 발생량 평가를 위한 소노루미네센스 발광강도의 측정)

  • Jungsoon Kim;Moojoon Kim
    • The Journal of the Acoustical Society of Korea
    • /
    • v.42 no.1
    • /
    • pp.50-56
    • /
    • 2023
  • The hydroxyl radical (·OH) and superoxide anion radical (·O2- ) generated by the shock wave generated during ultrasonic cavitation collapse in TiO2 suspension are highly useful because they can sterilize and disinfect. For practical use as a sterilization method without any chemicals, in this study, we proposed a method for evaluating the generation of radicals generated by high-intensity ultrasound emitted to titanium dioxide suspension. In the proposed method, the sonoluminescence phenomenon, which emits light by ultrasonic cavitation decay energy, was utilized, and the degree of radical generation was evaluated through the amount of light energy by sonoluminescence. As a result, even at a low concentration of titanium dioxide of 0.02 wt%, light energy 5 times higher than in the absence of titanium dioxide was received. After that, as the concentration increased by 0.1 wt%, the luminous intensity of sonoluminescence increased linearly by about 14.8 × 10-12 lm. Therefore, it was confirmed that the radicals generated by radiating high-intensity ultrasound to the titanium dioxide suspension increased linearly as the concentration of titanium dioxide increased within a given concentration range.