• Title/Summary/Keyword: Recall information

Search Result 859, Processing Time 0.032 seconds

Automatic Parsing of MPEG-Compressed Video (MPEG 압축된 비디오의 자동 분할 기법)

  • Kim, Ga-Hyeon;Mun, Yeong-Sik
    • The Transactions of the Korea Information Processing Society
    • /
    • v.6 no.4
    • /
    • pp.868-876
    • /
    • 1999
  • In this paper, an efficient automatic video parsing technique on MPEG-compressed video that is fundamental for content-based indexing is described. The proposed method detects scene changes, regardless of IPB picture composition. To detect abrupt changes, the difference measure based on the dc coefficient in I picture and the macroblock reference feature in P and B pictures are utilized. For gradual scene changes, we use the macroblock reference information in P and B pictures. the process of scene change detection can be efficiently handled by extracting necessary data without full decoding of MPEG sequence. The performance of the proposed algorithm is analyzed based on precision and recall. the experimental results verified the effectiveness of the method for detecting scene changes of various MPEG sequences.

  • PDF

Object of Interest Extraction Using Gabor Filters (가버 필터에 기반한 관심 객체 검출)

  • Kim, Sung-Young
    • Journal of the Korea Society of Computer and Information
    • /
    • v.13 no.2
    • /
    • pp.87-94
    • /
    • 2008
  • In this paper, an extraction method of objects of interest in the color images is proposed. It is possible to extract objects of interest from a complex background without any prior-knowledge based on the proposed method. For object extraction, Gator images that contain information of object location, are created by using Gator filter. Based on the images the initial location of attention windows is determined, from which image features are selected to extract objects. To extract object, I modify the previous method partially and apply the modified method. To evaluate the performance of propsed method, precision, recall and F-measure are calculated between the extraction results from propsed method and manually extracted results. I verify the performance of the proposed methods based on these accuracies. Also through comparison of the results with the existing method, I verily the superiority of the proposed method over the existing method.

  • PDF

An Experimental Study on Fuzzy Document Retrieval System (퍼지개념을 적용한 질의식의 분석과 문헌정보 검색에 관한 연구)

  • Lee Seung Chai
    • Journal of the Korean Society for Library and Information Science
    • /
    • v.21
    • /
    • pp.249-290
    • /
    • 1991
  • Theoretical developments in the information retrieval have offered a number of alternatives to traditional Boolean retrieval. Probability theory and fuzzy set theory have played prominent roles here. Fuzzy set theory is an attempt to generalize traditional set theory by permitting partial membership in a set and this means recognizing different degrees to which a document can match a request. In this study, an experimentation of a document retrieval system using the fuzzy relation matrix of the keywords is described and the results are offered. The queries composed of keywords and Boolean operaters AND, OR, NOT were processed in the retrieval method, and the method was implemented on the PC of 32bit level (30 MHz) in an experimental system. The measurement of the recall ratio and precision ratio verified the effectiveness of the proposed fuzzy relation matrix of keywords and retrieval method. Compared to traditional crisp method in the same document database, the recall ratio increased $10\%$ high although the precision ratio decreased slightly. The problems, in this experiment, to be resolved are first, the design of the automatic data input and fuzzy indexing modules, through which the system . can have the ability of competition and usefulness. Second, devising a systematic procedure for assigning fuzzy weights to keywords in documents and in queries.

  • PDF

Evaluation of accuracy of Self-reported Information in Pesticide Exposure Assessment (농약노출 평가에 사용되는 자가 보고의 정확성 평가)

  • Lee, Yun Keun;Park, Hee Sok;Min, Kyung Doo;Kim, Hyo Cher;Kim, Gyung Ran
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.28 no.3
    • /
    • pp.267-272
    • /
    • 2018
  • Objective: This study aimed to test the accuracy of self-reported information used in indirect estimation of pesticide exposure. Methods: To do so, self-reported values on the duration of pesticide application per day were compared with observed values. The number of days of pesticide application per year as recorded in self-administered logs was compared with recalled values. Results: It was found that participants underestimated the duration and frequency of actual pesticide use. High correlations were found between self-reported values and observed values, as well as between recalled values and recorded values. Conclusions: The reason might be that farmers unconsciously under-recall the application of pesticide since many customers prefer eco-friendly agricultural products. Farmers thought the task of applying pesticides to be essential, and this may explain why the participants in this study tended to accurately recall their pesticide-related work.

Web Service Matching Algorithm using Cluster and Ontology Information (클러스터와 온톨로지 정보를 이용한 웹 서비스 매칭 알고리즘)

  • Lee, Yong-Ju
    • Journal of Internet Computing and Services
    • /
    • v.11 no.1
    • /
    • pp.59-69
    • /
    • 2010
  • With the growing number of web services, there arise issues of finding suitable services. But, the traditional keyword search method is insufficient for two reasons: (1) this does not capture the underlying semantics of web services. (2) this does not suffice for accurately specifying users' information needs. In order to overcome limitations of this keyword search method, we propose a novel syntactic analysis and ontology learning method. The syntactic analysis method gives us a breadth of coverage for common terms, while the ontology learning method gives a depth of coverage by providing relationships. By combining these two methods, we hope to improve both the recall and the precision. We describe an experimental study on a collection of 508 web services that shows the high recall and precision of our method.

Improved Pedestrian Detection Using Object and Background Histograms (객체와 배경 히스토그램을 활용한 개선된 보행자 검출)

  • Jung, Jin-sik;Oh, Jeong-su
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.10a
    • /
    • pp.410-412
    • /
    • 2021
  • This paper proposes an improved pedestrian detection method using object and background histograms. Objects detected through the HOG & SVM algorithm are detected in a square shape. Inside the square area, the background and the object area are mixed. If only the area of the object excluding the background is detected, various object-related information may be easily obtained. The size of the detected rectangle is readjusted using an xy-axis projection algorithm to fit the size of the object. And then, the improved object is detected by dividing the background and the object based on the histogram of the object in the readjusted square. The average values of precision and recall, which are reliability evaluations comparing the detected object with the original object, are 97.9% and 90%, respectively.

  • PDF

Research on Chinese Microblog Sentiment Classification Based on TextCNN-BiLSTM Model

  • Haiqin Tang;Ruirui Zhang
    • Journal of Information Processing Systems
    • /
    • v.19 no.6
    • /
    • pp.842-857
    • /
    • 2023
  • Currently, most sentiment classification models on microblogging platforms analyze sentence parts of speech and emoticons without comprehending users' emotional inclinations and grasping moral nuances. This study proposes a hybrid sentiment analysis model. Given the distinct nature of microblog comments, the model employs a combined stop-word list and word2vec for word vectorization. To mitigate local information loss, the TextCNN model, devoid of pooling layers, is employed for local feature extraction, while BiLSTM is utilized for contextual feature extraction in deep learning. Subsequently, microblog comment sentiments are categorized using a classification layer. Given the binary classification task at the output layer and the numerous hidden layers within BiLSTM, the Tanh activation function is adopted in this model. Experimental findings demonstrate that the enhanced TextCNN-BiLSTM model attains a precision of 94.75%. This represents a 1.21%, 1.25%, and 1.25% enhancement in precision, recall, and F1 values, respectively, in comparison to the individual deep learning models TextCNN. Furthermore, it outperforms BiLSTM by 0.78%, 0.9%, and 0.9% in precision, recall, and F1 values.

Crowd Psychological and Emotional Computing Based on PSMU Algorithm

  • Bei He
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.18 no.8
    • /
    • pp.2119-2136
    • /
    • 2024
  • The rapid progress of social media allows more people to express their feelings and opinions online. Many data on social media contains people's emotional information, which can be used for people's psychological analysis and emotional calculation. This research is based on the simplified psychological scale algorithm of multi-theory integration. It aims to accurately analyze people's psychological emotion. According to the comparative analysis of algorithm performance, the results show that the highest recall rate of the algorithm in this study is 95%, while the highest recall rate of the item response theory algorithm and the social network analysis algorithm is 68% and 87%. The acceleration ratio and data volume of the research algorithm are analyzed. The results show that when 400,000 data are calculated in the Hadoop cluster and there are 8 nodes, the maximum acceleration ratio is 40%. When the data volume is 8GB, the maximum scale ratio of 8 nodes is 43%. Finally, we carried out an empirical analysis on the model that compute the population's psychological and emotional conditions. During the analysis, the psychological simplification scale algorithm was adopted and multiple theories were taken into account. Then, we collected negative comments and expressions about Japan's discharge of radioactive water in microblog and compared them with the trend derived by the model. The results were consistent. Therefore, this research model has achieved good results in the emotion classification of microblog comments.

Usability of a smartphone food picture app for assisting 24-hour dietary recall: a pilot study

  • Hongu, Nobuko;Pope, Benjamin T.;Bilgic, Pelin;Orr, Barron J.;Suzuki, Asuka;Kim, Angela Sarah;Merchant, Nirav C.;Roe, Denise J.
    • Nutrition Research and Practice
    • /
    • v.9 no.2
    • /
    • pp.207-212
    • /
    • 2015
  • BACKGROUND/OBJECTIVES: The Recaller app was developed to help individuals record their food intakes. This pilot study evaluated the usability of this new food picture application (app), which operates on a smartphone with an embedded camera and Internet capability. SUBJECTS/METHODS: Adults aged 19 to 28 years (23 males and 22 females) were assigned to use the Recaller app on six designated, nonconsecutive days in order to capture an image of each meal and snack before and after eating. The images were automatically time-stamped and uploaded by the app to the Recaller website. A trained nutritionist administered a 24-hour dietary recall interview 1 day after food images were taken. Participants' opinions of the Recaller app and its usability were determined by a follow-up survey. As an evaluation indicator of usability, the number of images taken was analyzed and multivariate Poisson regression used to model the factors determining the number of images sent. RESULTS: A total of 3,315 food images were uploaded throughout the study period. The median number of images taken per day was nine for males and 13 for females. The survey showed that the Recaller app was easy to use, and 50% of the participants would consider using the app daily. Predictors of a higher number of images were as follows: greater interval (hours) between the first and last food images sent, weekend, and female. CONCLUSIONS: The results of this pilot study provide valuable information for understanding the usability of the Recaller smartphone food picture app as well as other similarly designed apps. This study provides a model for assisting nutrition educators in their collection of food intake information by using tools available on smartphones. This innovative approach has the potential to improve recall of foods eaten and monitoring of dietary intake in nutritional studies.

A User based Collaborative Filtering Recommender System with Recommendation Quantity and Repetitive Recommendation Considerations (추천 수량과 재 추천을 고려한 사용자 기반 협업 필터링 추천 시스템)

  • Jihoi Park;Kihwan Nam
    • Information Systems Review
    • /
    • v.19 no.2
    • /
    • pp.71-94
    • /
    • 2017
  • Recommender systems reduce information overload and enhance choice quality. This technology is used in many services and industry. Previous studies did not consider recommendation quantity and the repetitive recommendations of an item. This study is the first to examine recommender systems by considering recommendation quantity and repetitive recommendations. Only a limited number of items are displayed in offline stores because of their physical limitations. Determining the type and number of items that will be displayed is an important consideration. In this study, I suggest the use of a user-based recommender system that can recommend the most appropriate items for each store. This model is evaluated by MAE, Precision, Recall, and F1 measure, and shows higher performance than the baseline model. I also suggest a new performance evaluation measure that includes Quantity Precision, Quantity Recall, and Quantity F1 measure. This measure considers the penalty for short or excess recommendation quantity. Novelty is defined as the proportion of items in a recommendation list that consumers may not experience. I evaluate the new revenue creation effect of the suggested model using this novelty measure. Previous research focused on recommendations for customer online, but I expand the recommender system to cover stores offline.