• 제목/요약/키워드: Reasoning Rule

검색결과 263건 처리시간 0.025초

퍼지 추론 규칙을 이용한 아동의 색채 심리 분석 (Child's Color Psychology Analysis using Fuzzy Reasoning Rule)

  • 김진옥;오암석;조재현;김광백
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 2005년도 춘계종합학술대회
    • /
    • pp.820-823
    • /
    • 2005
  • 개인의 경험을 통해 얻어지는 외부의 물리적 자극에 대한 복합적인 감성을 분석하여 공학적으로 처리함으로서 인간의 보다 편리하고 안락한 생활을 영위하도록 하는 연구가 진행되고 있다. 색채는 아동의 감성과 성격을 이해할 수 있는 중요한 요소이다. 또한 아동은 자신의 심리 상태나 갈등을 그리기나 낙서 등의 작업을 통해서 아동의 감성을 무의식적으로 표출하는 경우가 많다. 따라서 아동이 선호하는 색채를 통해 아동의 감성상태를 파악할 수 있다. 본 논문에서는 인간의 오감 즉, 시각, 청각, 후각, 미각, 촉각 중에서 시각(색채)에 따른 감성 상태를 파악하기 위하여 아동이 그린 그림의 색채를 분석한다. 그리고 퍼지 논리와 퍼지 추론 규칙을 적용하여 감성 상태를 파악하는 방법을 제안한다. 제안된 감성 처리 방법을 알슈울러와 해트윅(Alschuler and Hattwick)과 박재명의 색채에 따른 감성 상태에 적용한 결과, 제안된 감성 처리 방법이 효율적인 것을 확인하였다.

  • PDF

계층적 Fuzzy 감지기에 대한 연구 (A Study on the multcriteria Fuzzy Fire Detector)

  • 서영수;백동현
    • 한국화재소방학회논문지
    • /
    • 제11권2호
    • /
    • pp.45-53
    • /
    • 1997
  • 본 논문은 화재 감지기의 화재판정을 결정하는 방법으로 화재의 정도를 Fuzzy화 한다음 Fuzzy I$\rho$gic을 적용하여 화재와 비화재를 판별할 수 있는 새로운 기능의 Fuzzy감지기를 제안한 것이다. F Fuzzy 감지기의 입력요소는 화재의 정확한 판단을 위하여 온도센서, 연기센서, 광센서를 이용하였으 며 센서출력 신호를 디지털화 하여 적용하였다. 그 결과 기폰의 화재 감지기보다 화재감지 능력은 우수하였으나 정확한 화재판단을 위해서는 보다 많은 Rule을 생성할 수 있는 지식이 필요 하였으며 Fuzzy 감지기를 실제 적용할 경우 그 가능성을 보 였다.

  • PDF

건축문화유산의 공간경험 디자인 - 지능형 콘텐츠 서비스 플랫폼과 정보표현체계 - (Designing Augmented Spatial Experiences of Architectural Heritage - Information Modeling for Intelligent Content Service Platform -)

  • 장선영;김성준;김성아
    • 대한건축학회논문집:계획계
    • /
    • 제35권4호
    • /
    • pp.15-24
    • /
    • 2019
  • Currently, museums and architectural heritage provide augmented user experiences by incorporating various media technologies. They still, however, suffer from the limitation of entertainment-based and the provision of location-based simple and repetitive contents. In addition, while acting as a key medium of experience for architectural heritage, the concept of space is not properly reflected in current services. The purpose of this study is to design user space experience considering such characteristics of architectural heritage. The spatial experience content and content production platform are defined. This software platform creates content that enhances the experience of the place by giving a context-based digital data associated with space and objects. The spatial experience content is designed as a series of experience sequences. The composition of the sequence borrows the method of film and narrative which segment and connect consecutive experiences on a scene basis considering user's detailed spatial experience. Therefore, content components can be combined and reproduced in various types. Augmented contents were extracted by using rule-based reasoning function of ontology at the moment. As a practical example of architectural heritage, the Seokjojeon Hall is used to reveal a spatial experience scenario.

유비쿼터스 환경에서 개인화된 서비스를 위한 오톨로지와 규치 기반 자원 추론 (Ontology and Rule-Based Resource Reasoning for a Personalized Service in Ubiquitous Environments)

  • 강선희;박종현;홍성범;김영국;강지훈
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2008년도 추계학술발표대회
    • /
    • pp.985-988
    • /
    • 2008
  • 유비쿼터스 컴퓨팅 환경에서는 공유 가능한 자원들이 산재되어 존재하며 사용자는 이를 기반으로 최적의 서비스를 제공받기를 원한다. 그러나 환경 내에는 다양한 상황과 서비스들이 존재하며 사용자 개인의 선호 정보 역시 매우 다양한 것이 현실이다. 그러므로 사용자가 원하는 서비스의 제공을 위해서는 사용자가 어떠한 상황에서 어떠한 서비스를 요청했으며, 어떤 자원이 사용자의 현재 상황에 적절한지를 판단하여, 사용자 요구사항에 맞는 자원을 추론하는 과정이 반드시 필요하다. 본 논문에서는 사용자가 최적의 서비스를 제공받을 수 있도록 주변의 공유 가능한 자원들을 추론하고 이들을 추천하기 위한 방법을 제안한다. 이를 위하여 사용자의 상황을 인식하기 위한 방안으로 온톨로지를 이용한 상황추론 방법을 제안한다. 또한 사용자 선호 정보를 반영하여 개인 맞춤형 자원을 추천하기 위한 추론방법의 하나로 규칙을 이용한 추론방법을 제안한다.

K-IFRS에 따른 사례기반추론에 기반한 지능형 기업 진단 모형 (A Intelligent Diagnostic Model that base on Case-Based Reasoning according to Korea - International Financial Reporting Standards)

  • 이형용
    • 지능정보연구
    • /
    • 제20권4호
    • /
    • pp.141-154
    • /
    • 2014
  • 최근 재무제표분석을 통하여서 기업을 진단하려고 하는 다양한 학문적인 연구와 실질적인 적용이 실행되고 있다. 특히, 최근 새롭게 변경된 회계기준인 한국채택 국제회계기준(K-IFRS: Korea - International Financial Reporting Standards)에 따라서 제무제표분석에도 변화가 발생하고, 그에 따라서 기업 진단도 새롭게 변화되어야 하는 상황이 되었다. 이에 현재, 금융권에서도 관심을 갖고 있는 매출채권 처리의 변화에 따라서 발생하는 재무제표상의 진단 및 분석을 반영하여서 처리하는 새로운 진단모형의 필요성이 대두되었다. 특히, 최근 모뉴엘이라는 기업의 매출채권을 이용한 금융스캔들의 영향으로 이러한 연구가 더욱 활발하게 진행되고 있다. 매출채권은 일반적 상거래에서 발생하는 신용채권 으로서, 기업이 만기까지 보유하거나 만기 전에 양도가 가능한 금융 상품이다. 기업이 매출 채권을 할인하여 양도할 경우에 매출채권 할인을 매각거래로 처리하고, 할인료에 해당하는 금액을 매출채권처분 손실로 처리하며, 해당 거래를 우발 채무로 공시하였다. 그러나, K-IFRS 하에서는 모든 위험과 보상이 이전되지 않는 한 매출채권 할인을 차입거래로 인식한다. 이는 기업 부채의 증가로 기업가치에 영향을 미치게 된다, 이 논문에서는 매출채권 할인이 실질적으로 기업가치에 부정적인 영향을 미치는지 추정하는 지능형진단시스템을 제안한다. 본 논문에서는 매출채권 할인이 주가에 미치는 영향을 인공지능기법인 사례기반추론(case based reasoning)과 자기조직화지도 (self-organizing maps)기법을 통하여 진단 모형을 구축하였다.

보다 정확한 동적 상황인식 추천을 위해 정확 및 오류 패턴을 활용하여 순차적 매칭 성능이 개선된 상황 예측 방법 (Context Prediction Using Right and Wrong Patterns to Improve Sequential Matching Performance for More Accurate Dynamic Context-Aware Recommendation)

  • 권오병
    • Asia pacific journal of information systems
    • /
    • 제19권3호
    • /
    • pp.51-67
    • /
    • 2009
  • Developing an agile recommender system for nomadic users has been regarded as a promising application in mobile and ubiquitous settings. To increase the quality of personalized recommendation in terms of accuracy and elapsed time, estimating future context of the user in a correct way is highly crucial. Traditionally, time series analysis and Makovian process have been adopted for such forecasting. However, these methods are not adequate in predicting context data, only because most of context data are represented as nominal scale. To resolve these limitations, the alignment-prediction algorithm has been suggested for context prediction, especially for future context from the low-level context. Recently, an ontological approach has been proposed for guided context prediction without context history. However, due to variety of context information, acquiring sufficient context prediction knowledge a priori is not easy in most of service domains. Hence, the purpose of this paper is to propose a novel context prediction methodology, which does not require a priori knowledge, and to increase accuracy and decrease elapsed time for service response. To do so, we have newly developed pattern-based context prediction approach. First of ail, a set of individual rules is derived from each context attribute using context history. Then a pattern consisted of results from reasoning individual rules, is developed for pattern learning. If at least one context property matches, say R, then regard the pattern as right. If the pattern is new, add right pattern, set the value of mismatched properties = 0, freq = 1 and w(R, 1). Otherwise, increase the frequency of the matched right pattern by 1 and then set w(R,freq). After finishing training, if the frequency is greater than a threshold value, then save the right pattern in knowledge base. On the other hand, if at least one context property matches, say W, then regard the pattern as wrong. If the pattern is new, modify the result into wrong answer, add right pattern, and set frequency to 1 and w(W, 1). Or, increase the matched wrong pattern's frequency by 1 and then set w(W, freq). After finishing training, if the frequency value is greater than a threshold level, then save the wrong pattern on the knowledge basis. Then, context prediction is performed with combinatorial rules as follows: first, identify current context. Second, find matched patterns from right patterns. If there is no pattern matched, then find a matching pattern from wrong patterns. If a matching pattern is not found, then choose one context property whose predictability is higher than that of any other properties. To show the feasibility of the methodology proposed in this paper, we collected actual context history from the travelers who had visited the largest amusement park in Korea. As a result, 400 context records were collected in 2009. Then we randomly selected 70% of the records as training data. The rest were selected as testing data. To examine the performance of the methodology, prediction accuracy and elapsed time were chosen as measures. We compared the performance with case-based reasoning and voting methods. Through a simulation test, we conclude that our methodology is clearly better than CBR and voting methods in terms of accuracy and elapsed time. This shows that the methodology is relatively valid and scalable. As a second round of the experiment, we compared a full model to a partial model. A full model indicates that right and wrong patterns are used for reasoning the future context. On the other hand, a partial model means that the reasoning is performed only with right patterns, which is generally adopted in the legacy alignment-prediction method. It turned out that a full model is better than a partial model in terms of the accuracy while partial model is better when considering elapsed time. As a last experiment, we took into our consideration potential privacy problems that might arise among the users. To mediate such concern, we excluded such context properties as date of tour and user profiles such as gender and age. The outcome shows that preserving privacy is endurable. Contributions of this paper are as follows: First, academically, we have improved sequential matching methods to predict accuracy and service time by considering individual rules of each context property and learning from wrong patterns. Second, the proposed method is found to be quite effective for privacy preserving applications, which are frequently required by B2C context-aware services; the privacy preserving system applying the proposed method successfully can also decrease elapsed time. Hence, the method is very practical in establishing privacy preserving context-aware services. Our future research issues taking into account some limitations in this paper can be summarized as follows. First, user acceptance or usability will be tested with actual users in order to prove the value of the prototype system. Second, we will apply the proposed method to more general application domains as this paper focused on tourism in amusement park.

베이지안 네트워크 기반에 자가관리를 위한 결함 지역화 (Fault Localization for Self-Managing Based on Bayesian Network)

  • 박순선;박정민;이은석
    • 정보처리학회논문지B
    • /
    • 제15B권2호
    • /
    • pp.137-146
    • /
    • 2008
  • 결함 지역화는 관찰된 결함의 근본 원인을 자동 인식 하는 것이 가능하기 때문에 규모가 큰 분산시스템에서 중요 역할 수행하며 시스템의 신뢰성 개선을 위해 시스템의 관리와 제어가 가능한 자가 관리를 지원한다. 결함 지역화를 지원하는 기존 연구들은 유비쿼터스 환경에서 베이지안 네트워크와 같은 인공지능 기술들을 주로 사용하여 진단과 예측 기능 중 하나만을 고려하고 있다. 따라서, 본 논문에서는 시스템의 신뢰성 개선을 위해 실시간 시스템 성능 스트림에 대한 학습을 통해 자가관리를 위한 확률적 의존 분석을 기반으로 하는 결함 지역화 방법을 제안하여 진단과 예측기능을 동시 제공한다. 학습 방법으로 베이지안 네트워크 알고리즘을 사용하여 각종 관련된 요소들을 연결함으로써 네트워크를 생성하고 확률적 의존 관계를 통해 귀납적과 연역적 추론기능을 제공한다. 베이지안 네트워크의 구성은 노드들간의 연관성을 찾아내는 것이 중요하기 때문에 그것을 구성하는 인자의 개수가 많은 경우 노드 순서 리스트를 추출하는 사전처리 과정이 필요하다. 따라서 전체 모델링 프로세스에 대한 개선이 요구된다. 이러한 문제를 해결하기 위해 발생한 문제와 관련성이 높은 노드 순서 리스트를 추출하는 방법을 제공한다. 구조 학습을 지원 하는 사전처리 방법을 통해 다양한 문제 영역에서의 학습 효율성을 높이며 학습에 필요로 되는 시간을 줄인다. 제안 방법론을 통해서 시스템의 자원 문제를 신속하고 정확하게 진단하는 것이 가능하며, 관찰된 정보를 기반으로 실행 중에 발생되는 잠재적인 문제를 예측하는 것이 가능하다. 시스템 성능 평가 영역에서 제안 방법론을 적용한 시스템 성능 분석을 기반으로 진단, 예측의 효율성과 정확성을 평가하여 제안 방법론의 유효성을 입증하였다.

클라우드 컴퓨팅 환경에서의 대용량 RDFS 추론을 위한 분산 테이블 조인 기법 (Distributed Table Join for Scalable RDFS Reasoning on Cloud Computing Environment)

  • 이완곤;김제민;박영택
    • 정보과학회 논문지
    • /
    • 제41권9호
    • /
    • pp.674-685
    • /
    • 2014
  • 지식 서비스 시스템이 효과적인 서비스를 제공하기 위해서는, 명시된 지식을 바탕으로 새로운 지식을 추론 할 수 있어야 한다. 대부분 지식 서비스 시스템은 온톨로지로 지식을 표현한다. 실 세계의 지식 정보의 양은 점점 방대해지고 있으며, 따라서 대용량 온톨로지를 효과적으로 추론하는 기법이 요구되고 있다. 본 논문은 클라우드 컴퓨팅 환경을 기반으로 대용량 온톨로지를 RDFS수준으로 추론하기 위한 분산 테이블 조인 방법을 제안하고, 성능을 평가한다. 본 논문에서 제안하는 RDFS 추론은 분산 파일 시스템 환경에서 RDFS 메타 테이블을 기반으로 맵-리듀스를 적용한 방식과, 맵-리듀스를 사용하지 않고 클라우드 컴퓨터의 메모리만 사용한 방식에 초점을 맞추었다. 따라서 본 논문에서는 제안하는 각 기법에 대한 추론 시스템 구조와 RDFS 추론 규칙에 따른 메타 테이블 설계 및 추론 전략 알고리즘에 대해서 중점적으로 설명한다. 제안하는 기법의 효율성을 검증하기 위해 온톨로지 추론과 검색 속도를 평가하는 공식 데이터인 LUBM1000부터 LUBM6000을 대상으로 실험을 수행 하였다. 가장 큰 LUBM6000(8억 6천만 트리플)의 경우, 메타 테이블 기반의 RDFS 추론 기법은 전체 추론 시간이 13.75분(초당 1,042 트리플 추론) 소요된 반면, 클라우드 컴퓨터의 메모리를 적용한 방식은 7.24분(초당 1,979 트리플 추론)이 소모되어 약 2배정도 빠른 추론 속도를 보였다.

확률적 퍼지 룰 기반 학습에 의한 개인화된 미디어 제어 방법 (Personalized Media Control Method using Probabilistic Fuzzy Rule-based Learning)

  • 이형욱;김용휘;이태엽;박광현;김용수;조준면;변증남
    • 한국지능시스템학회논문지
    • /
    • 제17권2호
    • /
    • pp.244-251
    • /
    • 2007
  • 사용자 의도 파악(intention reading) 기술은 스마트 홈과 같은 복잡한 유비쿼터스(ubiquitous) 환경에서 사용자에게 보다 편리하고 개인화된(personalized) 서비스 제공이 가능하도록 해준다. 또한 학습 기능(learning capability)은 지식 발견(knowledge discovery)의 관점에서 의도 파악 기술의 핵심 요소 기술의 하나로 자리 매김하고 있다 이 논문에서는 스마트 홈(smart home) 환경에서 제공 가능한 개인화된 서비스 중의 하나로, 개인화된 미디어 제어 방법에 대한 내용을 다룬다. 특히, 사람의 행동 패턴과 같은 데이터는 패턴 분류의 관점에서 구분해야 할 클래스(class)에 비해 입력 정보가 불충분한 경우가 많아서 비일관적인(inconsistent) 데이터가 많으므로, 퍼지 논리(fuzzy logic)와 확률 (probability)의 개념을 효과적으로 병행해야 의미 있는 지식을 추출해 낼 수 있다. 이를 위하여 반복 퍼지 지도 클러스터링(IFCS; Iterative Fuzzy Clustering with Supervision) 알고리즘에 기반하여 주어진 데이터 패턴으로부터 확률적 퍼지 룰(probabilistic fuzzy rule)을 얻어 내는 방법에 대해 설명한다. 또한 이를 이용한 다양한 학습 제어 구조를 바탕으로 개인화된 미디어 서비스를 추천해 줄 수 있는 방법에 대해서 설명하도록 하고, 실험 결과를 통해 제안된 시스템의 효용성을 보이도록 한다.

퍼지 온톨로지를 이용한 선호도 기반 공급사슬 파트너 선정 (Preference-based Supply Chain Partner Selection Using Fuzzy Ontology)

  • 이해경;고창성;김태운
    • 지능정보연구
    • /
    • 제17권1호
    • /
    • pp.37-52
    • /
    • 2011
  • 공급사슬관리(SCM)는 공급사슬의 가치를 높이고 변화하는 환경에 더 민첩하게 적응할 수 있는 전략적인 접근방식이다. 공급사슬 파트너 간에 중단 없는 파트너쉽과 가치 창출을 위해서는 정보와 지식의 공유 및 적절한 파트너 선정기준이 적용되어야 한다. 따라서 파트너 선정 기준은 제품의 품질과 신뢰도를 유지하기 위해서 아주 중요하다. 제품의 각 부품은 적절한 공급 파트너를 통해서 공급된다. 파트너를 선정하는 기준은 기술적 능력, 품질, 가격, 지속성 등 여러 요인이 있다. 실제로 파트너 선정기준은 구성부품의 특성에 따라서 변화할 수 있다. 그 부품이 핵심 구성품이면 품질이 가격에 비해서 최고 우선순위가 된다. 표준부품은 낮은 가격이 우선순위를 가진다. 간혹 긴급 주문과 같은 예기치 못한 상황이 발생하면 우선순위가 변하게 된다. 따라서 SCM 파트너 선정 기준은 구성부품의 특성과 상황에 따라서 동적으로 결정 되어진다. 이 연구의 목적은 상황과 부품의 특성에 따라서 공급사슬 파트너쉽을 위한 온톨로지 모델을 제시하고자 하는 것이다. 변수의 불확실성은 퍼지이론을 이용하여 나타내고자 하였다. 부품별 우선순위와 상황변수는 웹 온톨로지 언어(OWL : Web Ontology Language)를 이용하여 모델링 하였다. 부품의 우선순위는 퍼지로직을 이용한 퍼지소속함수로 변환 되어진다. 온톨로지의 추론을 위해서 SWRL(Semantic Web Rule Language)을 이용하였다. 제안된 모델의 구현을 위해서 자동차 구성품인 스타트모터 부품을 대상으로 온톨로지를 구축하고 구성 부품별 우선순위에 따른 공급 파트너를 선정하는 과정을 제시하였다.