• Title/Summary/Keyword: Real-time operation systems

Search Result 668, Processing Time 0.033 seconds

Friction Characteristics of Magnetic Clutch Used in Automobiles (차량용 마그네틱 클러치의 마찰 특성)

  • Kim, Dong-Wook;Kim, Kyung-Woong
    • Tribology and Lubricants
    • /
    • v.25 no.4
    • /
    • pp.243-249
    • /
    • 2009
  • A magnetic clutch consists of pulley and disk. It delivers and isolates the power needed for the operation of the compressor used in automotive air conditioning system. To improve the performance, efficiency and durability of automotive air conditioning system, appropriate design of pulley, disk and system working parameters(the magnitude of magnetic force, and so on) is necessary. For that goal, it is required to understand the friction characteristics of magnetic clutch for the initial operating time. In this study, friction tests were carried out in order to investigate the effect of sliding velocity on the friction characteristics of magnetic clutch using pin-on-disk type friction and wear tester. For experiments, pulley and disk used in real automotive air conditioning system were considered. Friction experiments were conducted under various sliding velocities, and coefficients of kinetic friction were obtained. Under the experimental conditions considered in this study, the coefficients of kinetic friction increased with the increase of test number(sliding distance) and decreased with the increase of sliding velocity.

A New Approach to Sensorless Control Method for Brushless DC Motors

  • Kim, Tae-Sung;Park, Byoung-Gun;Lee, Dong-Myung;Ryu, Ji-Su;Hyun, Dong-Seok
    • International Journal of Control, Automation, and Systems
    • /
    • v.6 no.4
    • /
    • pp.477-487
    • /
    • 2008
  • This paper proposes a new position sensorless drive for brushless DC (BLDC) motors. Typical sensorless control methods such as the scheme with the back-EMF detection method show high performance only at a high speed range because the magnitude of the back-EMF is dependent upon the rotor speed. This paper presents a new solution that estimates the rotor position by using an unknown input observer over a full speed range. In the proposed method, a trapezoidal back-EMF is modelled as an unknown input and the proposed unknown input observer estimating a line-to-line back-EMF in real time makes it possible to detect the rotor position. In particular, this observer has high performance at a low speed range in that the information of a rotor position is calculated independently of the rotor speed without an additional circuit or complicated operation process. Simulations and experiments have been carried out for the verification of the proposed control scheme.

Real time crack detection using mountable comparative vacuum monitoring sensors

  • Roach, D.
    • Smart Structures and Systems
    • /
    • v.5 no.4
    • /
    • pp.317-328
    • /
    • 2009
  • Current maintenance operations and integrity checks on a wide array of structures require personnel entry into normally-inaccessible or hazardous areas to perform necessary nondestructive inspections. To gain access for these inspections, structure must be disassembled and removed or personnel must be transported to remote locations. The use of in-situ sensors, coupled with remote interrogation, can be employed to overcome a myriad of inspection impediments stemming from accessibility limitations, complex geometries, the location and depth of hidden damage, and the isolated location of the structure. Furthermore, prevention of unexpected flaw growth and structural failure could be improved if on-board health monitoring systems were used to more regularly assess structural integrity. A research program has been completed to develop and validate Comparative Vacuum Monitoring (CVM) Sensors for surface crack detection. Statistical methods using one-sided tolerance intervals were employed to derive Probability of Detection (POD) levels for a wide array of application scenarios. Multi-year field tests were also conducted to study the deployment and long-term operation of CVM sensors on aircraft. This paper presents the quantitative crack detection capabilities of the CVM sensor, its performance in actual flight environments, and the prospects for structural health monitoring applications on aircraft and other civil structures.

Construction of Scheduling Support System for Panel Lines by Digital Manufacturing Simulation (디지털 생산 시뮬레이션 기반의 판넬라인 일정계획지원 시스템 구축)

  • Lee, Kwang-Kook;Choi, Dong-Hwan;Han, Sang-Dong;Park, Ju-Young;Shin, Jong-Gye
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.43 no.2 s.146
    • /
    • pp.228-235
    • /
    • 2006
  • Nowadays, digital manufacturing has been known to be very effective method in manufacturing fields. It is aimed to estimate process time, to improve operation efficiency, and to prevent bottleneck processes in advance of real manufacturing. This paper addresses a scheduling support system for panel hues in a shipyard through digital manufacturing simulation. The proposed system supports operators to make better decisions on the shop-floor scheduling in panel lines. It ,would provide a complete schedule that is at least as good as any schedule currently obtained. Furthermore, it can evaluate the operator's schedule by simulating it with 3-dimensional models before the work orders and schedules are released.

Various IoT Sensor based Laboratory Safety Management System (다중 IoT 센서 기반 실험실 관리 시스템)

  • Lee, Jongwon;Jeong, Daejin;Kang, Inshik;Jung, Hoekyung
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2018.10a
    • /
    • pp.309-310
    • /
    • 2018
  • Recently, the systems for managing the labs provide services that can be managed in real time by using various sensors based on IoT. The system collects sensor data and transmits it to the server, identifies the dangerous situation, and sends operation commands to the devices. These systems have a centralized structure that slows data processing when managing multiple laboratories. To solve this problem, this paper proposes a system that manages laboratories in distributed processing environment to identify and manage risk situations. The sensor module is used to control the laboratory and to automatically identify and respond to the dangerous situation.

  • PDF

Proactive Maintenance Framework of Manufacturing Equipment through Performance-based Reliability

  • Kim, Yon-Soo;Chung, Young-Bae
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.22 no.53
    • /
    • pp.45-54
    • /
    • 1999
  • Manufacturing today is becoming increasingly competitive. If a company is to exist and successfully compete, it must pay very careful attention to production management, total quality assurance and total proactive maintenance issues. Overall machine performance, repair efficiency, system level utilization, productivity and quality of output need to be optimized as possible. To accomplish that objective, the behavior of manufacturing equipment and systems need to be monitored and measured continuously if it is possible. Then early warning of possible failure should be generated and proacted on that type of the situation to improve overall operation performance of manufacturing environment. In this paper, Proactive maintenance framework using performance-based reliability structure as enabler technology is proposed. Its paradigm enables one to maximize system through-put and product quality as well as resources in the performance domain. In the case of inadequate knowledge of the failure mechanics, this empirical modeling concept along with performance degradation knowledge can serve as an important product and process improvement tool. The real-time framework extension to proposed framework uses on-line performance information and is capable of projecting the remaining useful period.

  • PDF

Coordinated Control Strategy for Power Systems with Wind Farms Integration Based on Phase-plane Trajectory

  • Zeng, Yuan;Yang, Yang;Qin, Chao;Chang, Jiangtao;Zhang, Jian;Tu, Jingzhe
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.1
    • /
    • pp.20-29
    • /
    • 2018
  • The dynamic characteristics of power systems become more and more complex because of the integration of large-scale wind power, which needs appropriate control strategy to guarantee stable operation. With wide area measurement system(WAMS) creating conditions for realizing realt-ime transient stability analysis, a new coordinated control strategy for power system transient stability control based on phase-plane trajectory was proposed. When the outputs of the wind farms change, the proposed control method is capable of selecting optimal generators to balance the deviation of wind power and prevent transient instability. With small disturbance on the base operating point, the coordinated sensitivity of each synchronous generator is obtained. Then the priority matrix can be formed by sorting the coordinated sensitivity in ascending order. Based on the real-time output change of wind farm, coordinated generators can be selected to accomplish the coordinated control with wind farms. The results in New England 10-genrator 39-bus system validate the effectiveness and superiority of the proposed coordinated control strategy.

Development of Embedded System Based Cortex-M for Smart Manufacturing (스마트 제조를 위한 Cortex-M 기반 임베디드 시스템 개발)

  • Cho, Choon-Nam
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.33 no.4
    • /
    • pp.326-330
    • /
    • 2020
  • Small-scale production control systems for smart manufacturing are becoming increasingly necessary as the manufacturing industry seeks to maximize manufacturing efficiency as the demand for customized product production increases. Correspondingly, the development of an embedded system to realize this capability is becoming important. In this study, we developed an embedded system based on an open source system that is cheaper than a widely applied programmable logic controller (PLC)-based production control system that is easier to install, configure, and process than a conventional relay control panel. This embedded system is system is based on a low-power, high-performance Cortex M4 processor and can be applied to smart manufacturing. It is designed to improve the development environment and compatibility of existing PLCs, control small-scale production systems, and enable data collection through heterogeneous communication. The real-time response characteristics were confirmed through an operation test for input/output control and data collection, and it was confirmed that they can be used in industrial sites.

Lifetime Distribution Model for a k-out-of-n System with Heterogeneous Components via a Structured Markov Chain (구조화 마코프체인을 이용한 이종 구성품을 갖는 k-out-of-n 시스템의 수명분포 모형)

  • Kim, Heungseob
    • Journal of Applied Reliability
    • /
    • v.17 no.4
    • /
    • pp.332-342
    • /
    • 2017
  • Purpose: In this study, the lifetime distribution of a k-out-of-n system with heterogeneous components is suggested as Markov model, and the time-to-failure (TTF) distribution of each component is considered as phase-type distribution (PHD). Furthermore, based on the model, a redundancy allocation problem with a mix of components (RAPMC) is proposed. Methods: The lifetime distribution model for the system is formulated by the structured Markov chain. From the model, the various information on the system lifetime can be ascertained by the matrix-analytic (or-geometric) method. Conclusion: By the generalization of TTF distribution (PHD) and the consideration of heterogeneous components, the lifetime distribution model can delineate many real systems and be exploited for developing system operation policies such as preventive maintenance, warranty. Moreover, the effectiveness of the proposed RAPMC is verified by numerical experiments. That is, under the equivalent design conditions, it presented a system with higher reliability than RAP without component mixing (RAPCM).

Distributed Multi-Sensor based Laboratory Safety Management System (분산 다중 센서 기반 실험실 안전 관리 시스템)

  • Hwang, Doyeun;Kim, Hwangryong;Kim, Eunseong;Jung, Daejin;Jung, Hoekyung
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2019.05a
    • /
    • pp.585-586
    • /
    • 2019
  • Recently, the systems for managing the labs provide services that can be managed in real time by using various sensors based on IoT. The system collects sensor data and transmits it to the server, identifies the dangerous situation, and sends operation commands to the devices. These systems have a centralized structure that slows data processing when managing multiple laboratories. To solve this problem, this paper proposes a system that manages laboratories in distributed processing environment to identify and manage risk situations. The sensor module is used to control the laboratory and to automatically identify and respond to the dangerous situation.

  • PDF