• Title/Summary/Keyword: Real-time kinematic

Search Result 220, Processing Time 0.025 seconds

Development of on-line inverse kinematic algorithm and its experimental implementation (온라인 좌표 역변환 알고리듬의 개발과 이의 실험적 수행)

  • 오준호;박서욱;이두현
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1988.10a
    • /
    • pp.16-20
    • /
    • 1988
  • This paper presents a new algorithm for solving the inverse kinematics in real-time applications. The end-tip movement of each link can be resolved into the basic resolution unit, .DELTA.l, which depends on link length, reduction ratio and resolution of the incremental encoder attached to the joint. When x- and y-axis projection of the end-tip movement are expressed in .DELTA.l unit, projectional increments .DELTA.x and .DELTA.y become -1, 0 or I by truncation. By using the incremental computation with these ternary value and some simple logic rules, a coordinate transformation can be realized. Through this approach, it should be noted that the floating-point arithmetic and the manipulation of trigonometric functions are completely eliminated. This paper demonstrates the proposed method in a parallelogram linkage type, two-link arm.

  • PDF

A New Dynamic Analysis of 6-3 Stewart Platform Manipulator (6-3 스튜워트 플랫폼 운동장치의 운동방정식 해석)

  • Kim, Nak-In;Lee, Chong-Won
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.11
    • /
    • pp.1820-1828
    • /
    • 2001
  • The dynamics of the 6-3 Stewart platform manipulator (SPM) is newly derived based on the kinematic relations particularly developed fur the SPM. The essence of the analysis is to deal with three subsystems of the SPM, each consisting of the command and feedback line links associated with two joined neighboring actuators. The dynamics of the command and feedback line links are first formulated using Lagrange and Newton-Euler method and then combined to derive the dynamic equations of motion fur the SPM. The derived nonlinear equations of motion are so computationally effective that it can be easily applied to real-time high-speed tracking control of 6-3 SPM.

A Reverse Kinematic Approach for Error Analysis of a Machine tool Using Hemispherical Helix Ball bar test (반구상의 나선형 볼바측정을 통한 공작기계 오차해석의 역기구학적 접근)

  • Yang, Seung-Han;Kim, Ki-Hoon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.3
    • /
    • pp.143-151
    • /
    • 2001
  • Machine tool errors have to be characterized and predicted to improve machine tool accuracy. A real-time error compensation system has been developed based on volumetric error synthesis model which is composed of machine tool errors. This paper deals with new algorithm about verification of machine tool errors. This new algorithm uses a simplified volumetric error synthesis model. This simplified model is constructed with only main components among the error components of the machine. The main error components are analyzed by ball bar test of hemispherical helix. The novel measurement method using ball bar system has many advantages which are more efficient, easier to use than conventional measurement system.

  • PDF

Development of a CNC Machine using a Parallel Mechanism (병렬기구 공작기계의 프로그램 개발)

  • 박근우
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2000.04a
    • /
    • pp.679-684
    • /
    • 2000
  • This paper presents the development of system and program for a Parallel-Typed CNC Machine. The system consists of parallel manipulator, PC (Personal Computer), DMC (DSP Motion Controller), and machining tools. In order to control the manipulator, the program, which is implemented in "c/c++" language, involves inverse/direct kinematics, velocity mapping, Jacobian and etc. A controller computes the kinematic formulation in real-time and generates and motion by the DMC. A monitor, which has access to program and sensory information, displays the status of manipulator.nipulator.

  • PDF

Design and Algorithm Verification of Precision Navigation System (정밀항법 시스템 설계 및 알고리즘 검증)

  • Jeong, Seongkyun;Kim, Taehee;Lee, Jae-Eun;Lee, Sanguk
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.21 no.1
    • /
    • pp.8-14
    • /
    • 2013
  • As GNSS(Global Navigation Satellite System) is used in various filed, many countries establish GNSS system independently. But GNSS system has the limitation of accuracy and stability in stand-alone mode, because this system has error elements which are ionospheric delay, tropospheric delay, orbit ephemeris error, satellite clock error, and etc. For overcome of accuracy limitation, the DGPS(Differential GPS) and RTK(Real-Time Kinematic) systems are proposed. These systems perform relative positioning using the reference and user receivers. ETRI(Electronics and Telecommunications Research Institute) is developing precision navigation system in point of extension of GNSS usage. The precision navigation system is for providing the precision navigation solution to common users. If this technology is developed, GNSS system can be used in the fields which require precision positioning and control. In this paper, we introduce the precision navigation system and perform design and algorithm verification.

Extended Operational Space Formulation for the Kinematics, Dynamics, and Control of the Robot Manipulators with Redundancy (여유자유도 로봇의 기구학, 동역학 및 제어를 위한 확장실공간 해석)

  • 장평훈;박기철;김승호
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.12
    • /
    • pp.3253-3269
    • /
    • 1994
  • In this paper a new concept, named the Extended Operational Space Formulation, has been proposed for the effective analysis and real-time control of the robot manipulators with kinematic redundancy. The extended operational space consists of operational space and optimal null space. The operational space is used to describe robot end-effector motion; whereas the optimal null space, defined as the target space of the self motion manifold, is used to express the self motion for the secondary tasks. Based upon the proposed formulation, the kinematics, statics, and dynamics of redundant robots have been analyzed, and an efficient control algorithm has been proposed. Using this algorithm, one can optimize a performance measure while tracking a desired end-effector trajectory with a better computational efficiency than the conventional methods. The effective ness of the proposed method has been demonstrated with simulations.

Field Test Results of CDGPS Precision Positioning Using Single Frequency, CA Code GPS Receivers (단일주파수 CA코드 GPS 수신기를 이용한 CDGPS 정밀측위실험)

  • Won, Jong-Hoon;Ko, Sun-Jun;Park, Heun-Jun;Lee, Ja-Sung
    • Proceedings of the KIEE Conference
    • /
    • 2000.07d
    • /
    • pp.2436-2438
    • /
    • 2000
  • In this paper, field test results of a new efficient integer ambiguity resolution algorithm for precision Carrier Differential GPS(CDGPS) positioning are presented. The new algorithm is based on a reconfiguration Kalman filter which is designed to be used for the real-time precise positioning with low cost, single frequency, conventional C/A code GPS receivers. The tests were performed both in static and kinematic environment

  • PDF

Long Baseline GPS RTK with Estimating Tropospheric Delays

  • Choi, Byung-Kyu;Roh, Kyoung-Min;Lee, Sang Jeong
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.3 no.3
    • /
    • pp.123-129
    • /
    • 2014
  • The real-time kinematic (RTK) is one of precise positioning methods using Global Positioning System (GPS) data. In the long baseline GPS RTK, the ionospheric and tropospheric delays are critical factors for the positioning accuracy. In this paper we present RTK algorithms for long baselines more than 100 km with estimating tropospheric delays. The state vector is estimated by the extended Kalman filter. We show the experimental results of GPS RTK for various baselines (162.10, 393.37, 582.29, and 1283.57 km) by using the Korea Astronomy and Space Science Institute GPS data and one International GNSS Service (IGS) reference station located in Japan. As a result, we present that long baseline GPS RTK can provide the accurate positioning for users less than few centimeters.

A Development of Displacement Monitoring System by GPS (GPS에 의한 변위 모니터링시스템 개발)

  • 최병길;문일용;이수영;김성표
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2001.10a
    • /
    • pp.71-82
    • /
    • 2001
  • 인공위성을 이용한 범 지구 위치결정시스템인 GPS(Global Positioning System)는 수 밀리의 정밀도로 정적, 동적 위치측정이 가능한 시스템으로 교량, 건축물, 댐 등 각종 구조물의 미세한 변위를 측정하는데 이용되고 있다. 최근 국내에서도 대형구조물의 변위 측정에 GPS를 활용하려는 시도가 부분적으로 이루어지고 있으나 초보적인 단계이며 체계적인 연구가 이루어지지 못하고 있는 실정이다. 본 연구에서는 RTK(Real Time Kinematic) GPS로 구조물의 변위를 실시간 측정하고 모니터링 할 수 있는 시스템을 개발하였다. 먼저 예비실험으로 반송파의 차분에 의해서 증폭되는 수신기의 측정잡음 오차, 다중경로 오차, GDOP(Geometric Dilution of Precision)가 RTK GPS의 위치정확도에 미치는 영향을 분석하였다. 그리고, RTK GPS를 이용하여 마포대교를 관측한 결과, 수 센티미터 정도 발생하는 구조물의 변위를 3차원으로 정밀 관측할 수 있었으며, 본 연구에서 개발한 모니터링프로그램을 이용하여 구조물의 거동을 실시간으로 모니터링 할 수 있었다.

  • PDF

Performance Analysis of Long Baseline Relative Positioning using Dual-frequency GPS/BDS Measurements

  • Choi, Byung-Kyu;Yoon, Ha Su;Lee, Sang Jeong
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.8 no.2
    • /
    • pp.87-94
    • /
    • 2019
  • The Global Navigation Satellite System (GNSS) Real-Time Kinematic (RTK) positioning has been widely used in geodesy, surveying, and navigation fields. RTK can benefit enormously from the integration of multi-GNSS. In this study, we develop a GPS/BeiDou Navigation Satellite System (BDS) RTK integration algorithm for long baselines ranging from 128 km to 335 km in South Korea. The positioning performance with GPS/BDS RTK, GPS-only RTK, and BDS-only RTK is compared in terms of the positioning accuracy. An improvement of positioning accuracy over long baselines can be found with GPS/BDS RTK compared with that of GPS-only RTK and that of BDS-only RTK. The positioning accuracy of GPS/BDS RTK is better than 2 cm in the horizontal direction and better than 5 cm in the vertical direction. A lower Relative Dilution of Precision (RDOP) value with GPS/BDS integration can obtain a better positional precision for long baseline RTK positioning.