• Title/Summary/Keyword: Real-time inspection system

Search Result 354, Processing Time 0.033 seconds

Optimal algorithm of FOV for solder joint inspection using neural network (신경회로망을 이용한 납땜 검사 FOV의 최적화 알고리즘)

  • 오제휘;차영엽
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.1549-1552
    • /
    • 1997
  • In this paper, a optimal algorithm that can produce the FOV is proposed in terms of using the Kohonen's Self-Organizing Map(KSOM). A FOV, that stands for "Field Of View", means maximum area where a camera could be wholly seen and influences the total time of inspection of vision system. Therefore, we draw algorithm with a KSOM which aims to map an input space of N-dimensions into a one-or two-dimensional lattice of output layer neurons in order to optimize the number and location of FOV, instead of former sequentila method. Then, we show demonstratin through computer simulation using the real PCB data. PCB data.

  • PDF

A Study on the Non-destructive Inspection for End Closure Welding of Nuclear Fuel Elements for the Irradiation Test (조사시험용 핵연료봉 용접부 비파괴검사에 관한 연구)

  • 김웅기;김수성;이철용;이도연;이정원
    • Proceedings of the KWS Conference
    • /
    • 2004.05a
    • /
    • pp.302-304
    • /
    • 2004
  • Nuclear fuel elements containing dry recycling nuclear fuel pellets for the irradiation test in a reactor were remotely fabricated from spent PWR fuel materials in a hot cell. End closure welding as well as seal tube welding for thermal sensor of the elements was performed by Nd:YAG laser. The soundness of the end closure welds and seal tube welds for the elements were evaluated by a precise X-ray inspection system composed of a micro-focus X-ray generator with an image intensifier and a real time camera system. Then, helium leak test was performed for the elements. The soundness of the welds of the fuel elements was confirmed by the X-ray inspection and helium leak test. The irradiation test for the fuel elements were successfully completed at the HANARO research reactor.

  • PDF

Development of Monitoring RF System on Leakage of Gas Cylinder in Gaseous Fire Extinguishing System (가스계 소화시스템용 소화약제 저장용기 누설 검출 무선 시스템 개발)

  • So, Soo-Hyun;Oh, Ju-Hwan;Cha, Cheol-Woong;Lee, Dae-Kuen
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 2008.11a
    • /
    • pp.7-10
    • /
    • 2008
  • In our study, Monitoring RF System in real-time on leakage of gas cylinder is developed. The system is consisted of Pressure Transmitting part, Main Controller and Operating program. The pressure data of gas cylinder are transmitted to the modem of main controller part by RF module of Pressure Transmitting part and the data received through the modem are recorded in real-time and showed the situation of gas cylinder on the PC monitor. Through the test on the case of the artificial pressure-reduction, the detecting performance. of the developed system is conformed.

  • PDF

Spot insepction System for Camera Target Lens using the Computer Aided Vision System (비젼을 이용한 카메라 렌즈 이물질 검사 시스템 개발)

  • 이일환;안우정;박희재;황두현;김왕도
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.04a
    • /
    • pp.271-275
    • /
    • 1996
  • In this paper, an automatic spot inspection system has been developed for camera target lens using the computer aided vision system. The developed system comprises: light source, magnifying optics, vision camera, XY robot, and a PC. An efficient algotithm for the spot detection has been implemented, thus up tof ew micrometer size spots can be effectively identified in real time. The developed system has been fully interfaced with XY robot systenm, PLCs, thus the practical spot inspection system has been implemented. The system has been applied to a practical camera manufacturing process, and showed its efficiency.

  • PDF

Rail Inspection Using Noncontact Laser Ultrasonics

  • Kim, Nak-Hyeon;Sohn, Hoon;Han, Soon-Woo
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.32 no.6
    • /
    • pp.696-702
    • /
    • 2012
  • In this study, a noncontact laser ultrasonic system is proposed for rail defect detection. An Nd-Yag pulse laser is used for generation of ultrasonic waves, and the corresponding ultrasonic responses are measured by a laser Doppler vibrometer. For the detection of rail surface damages, the shape of the excitation laser beam is transformed into a line. On the other hand, a point source laser beam is used for the inspection of defects inside a rail head. Then, the interactions of propagating ultrasonic waves with defects are examined using actual rail specimens. Amplitude attenuation was mainly observed for a surface crack, and reflections were most noticeable from an internal damage. Finally, opportunities and challenges associated with real-time rail inspection from a high-speed train are discussed.

Feasibility Study of Structural Behavior Monitoring Using GPS and Accelerometer (GPS와 가속도계를 이용한 구조물 거동모니터링의 타당성 연구)

  • Han, Jung Hun;Ryu, Sung Chan;Cho, Doo Yong;Park, Sun Kyu
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.16 no.3
    • /
    • pp.11-22
    • /
    • 2012
  • In this study, problems of RTK (Real Time Kinematic)-GPS (Global Positioning System) and an accelerometer sensor when applied to structures were experimentally identified through a comparison between results of the displacement measurement using the RTK-GPS, the accelerometer, and LVDT (Linear variable differential transformer). Integrated displacement was calculated by the improved RTK-GPS and accelerometer on the frequency of observation and positioning accuracy. This integrated displacement was also compared with that of LVDT to check the validity of application and feasibility.

Real Time Engine Quality Inspection System by Image Processing (영상처리기법에 의한 실시간 엔진 품질검사시스템)

  • Jung, Won;Shin, Hyun-Myung
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.24 no.3
    • /
    • pp.397-406
    • /
    • 1998
  • The purpose of this research is to develop an integrated quality inspection system using machine vision technology in the automotive engine assembly process. The system makes it possible for the inspected data to be entered directly from the machine vision system into the developed system without the need for intermediate operations. Such direct entry enables prompt corrective actions against process problems. An IVP-150 machine vision board is installed an the PC for image processing, and a template matching technology is implemented to precisely verify quality factors. The developed system is successfully installed in a manufacturing process, and it showed robustness to the problems of noise, distortion, and orientation.

  • PDF

A Study on the Reliability Improvement of Blockchain-based Ship Inspection Service (블록체인 기반 선박검사 서비스의 신뢰성 향상에 관한 연구)

  • Chun-Won Jang;Young-Soo Kang;Seung-Min Lee;Jun-Mo Park
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.25 no.1
    • /
    • pp.15-20
    • /
    • 2024
  • In the field of ship inspection in South Korea, due to outdated workflow processes, there is a possibility of tampering with inspection results. Accordingly, research is being conducted to prevent tampering with inspection results by introducing blockchain technology and cloud-based systems that allow real-time tracking and sharing of data, and to establish a transparent and efficient communication system. In this study, unit and integrated processes for overall data management and inspection execution related to ship inspection were implemented to automatically collect, manage, and track various inspection results occurring during the ship inspection process. Through this, it aimed to increase the efficiency of the ship inspection process overall, inducing growth in the ship inspection industry as a whole. The implemented web portal reached a level where trend analysis and comparative analysis with other ships based on inspection results are possible, and subsequent research aims to demonstrate the excellence of the system.

An Energy-Dissipation-Ratio Based Structural Health Monitoring System (에너지소산률을 이용한 구조물의 건전도 모니터링에 관한 연구)

  • Heo, Gwang-Hee;Shin, Heung-Chul;Shin, Jae-Chul
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.8 no.1
    • /
    • pp.165-174
    • /
    • 2004
  • This research develops a technique which uses energy dissipation ratio in order to monitor the structural health on real time basis. For real-time monitoring, we employ the NExT and the ERA which enable us to obtain real-time data. Energy dissipation ratio is calculated from those data only with the damping and natural frequency of the structure, and from the calculated values we develop an algorithm (Energy dissipation method) which decides the damage degree of structure. The Energy dissipation method developed in this research is proved to be valid by comparison with other methods like the eigenparameter method and the MAC. Especially this method enables us to save measuring time and data which are the most important in real-time monitoring, and its use of the ambient vibration also makes it easy to monitor the whole structure and its damage points.

Development of a Real-time 3D Intraoral Scanner Based on Fringe-Projection Technique (프린지 투영법을 이용한 실시간 3D 구강 내 스캐너의 개발)

  • Ullah, Furqan;Lee, Gunn-Soo;Park, Kang
    • Korean Journal of Computational Design and Engineering
    • /
    • v.17 no.3
    • /
    • pp.156-163
    • /
    • 2012
  • Real-time three-dimensional shape measurement is becoming increasingly important in various fields, including medical sciences, high-technology industry, and microscale measurements. However, there are not so many 3D profile tools specially designed for specifically narrow space, for example, to scan the tooth shape of a human jaw. In this paper, a real-time 3D intraoral scanner is proposed for the measurement of tooth profile in the mouth cavity. The proposed system comprises a laser diode beam, a micro charge-coupled device, a graticule, a piezoelectric transducer, a set of optical lenses, and a polhemus device sensor. The phase-shifting technique is used along with an accurate calibration method for the measurement of the tooth profile. Experimental and theoretical inspection of the phase-to-coordinate relation is presented. In addition, a nonlinear system model is developed for collimating illumination that gives the more accurate mathematical representation of the system, thus improves the shape measurement accuracy. Experiment results are presented to verify the feasibility and performance of the developed system. The experimental results indicate that overall measurement error accuracy can be controlled within 0.4 mm with a variability of ${\pm}0.01$.