• Title/Summary/Keyword: Real-time flood prediction

Search Result 48, Processing Time 0.031 seconds

Accuracy analysis of flood forecasting of a coupled hydrological and NWP (Numerical Weather Prediction) model

  • Nguyen, Hoang Minh;Bae, Deg-Hyo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2017.05a
    • /
    • pp.194-194
    • /
    • 2017
  • Flooding is one of the most serious and frequently occurred natural disaster at many regions around the world. Especially, under the climate change impact, it is more and more increasingly trend. To reduce the flood damage, flood forecast and its accuracy analysis are required. This study is conducted to analyze the accuracy of the real-time flood forecasting of a coupled meteo-hydrological model for the Han River basin, South Korea. The LDAPS (Local Data Assimilation and Prediction System) products with the spatial resolution of 1.5km and lead time of 36 hours are extracted and used as inputs for the SURR (Sejong University Rainfall-Runoff) model. Three statistical criteria consisting of CC (Corelation Coefficient), RMSE (Root Mean Square Error) and ME (Model Efficiency) are used to evaluate the performance of this couple. The results are expected that the accuracy of the flood forecasting reduces following the increase of lead time corresponding to the accuracy reduction of LDAPS rainfall. Further study is planed to improve the accuracy of the real-time flood forecasting.

  • PDF

Implementation of real-time water level prediction system using LSTM-GRU model (LSTM-GRU 모델을 활용한 실시간 수위 예측 시스템 구현)

  • Cho, Minwoo;Jeong, HanGyeol;Park, Bumjin;Im, Haran;Lim, Ine;Jung, Heokyung
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.10a
    • /
    • pp.216-218
    • /
    • 2022
  • Natural disasters caused by abnormal climates are continuously increasing, and the types of natural disasters that cause the most damage are flood damage caused by heavy rains and typhoons. Therefore, in order to reduce flood damage, this paper proposes a system that can predict the water level, a major parameter of flood, in real time using LSTM and GRU. The input data used for flood prediction are upstream and downstream water levels, temperature, humidity, and precipitation, and real-time prediction is performed through the pre-trained LSTM-GRU model. The input data uses data from the past 20 hours to predict the water level for the next 3 hours. Through the system proposed in this paper, if the risk determination function can be added and an evacuation order can be issued to the people exposed to the flood, it is thought that a lot of damage caused by the flood can be reduced.

  • PDF

Development of a Grid Based Two-Dimensional Numerical Method for Flood Inundation Modeling Using Globally-Available DEM Data (범용 DEM 데이터를 이용한 2차원 홍수범람 모형의 개발)

  • Lee, Seung-Soo;Lee, Gi-Ha;Jung, Kwan-Sue
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2010.05a
    • /
    • pp.659-663
    • /
    • 2010
  • In recent, flood inundation damages by hydraulic structure failures have increased drastically and thus a variety of countermeasures were needed to minimize such damages. A real-time flood inundation prediction technique is essential to protect and mitigate flood inundation damages. In the context of real time flood inundation modeling, this study aims to develop a grid based two-dimensional numerical method for flood inundation modeling using globally-available DEM data: SRTM with $90m{\times}90m$ spatial resolution. The newly-developed model guarantees computational efficiency in terms of geometric data processing by direct application of DEM for flood inundation modeling and also have good compatibility with various types of raster data when compared to a commercial model such as FLUMEN. The model, which employed the leap-frog algorithm to solve shallow water and continuity equations, can simulate inundating flow from channel to lowland and also returning flow from lowland to channel by comparing water levels between channel and lowland in real time. We applied the model to simulate the BaekSan levee break in the Nam river during a flood period from August 10 to 13, 2002. The simulation results had good agreements with the field-surveyed data in terms of inundated area and also showed physically-acceptable velocity vector maps with respect to inundating and returning flows.

  • PDF

Linkage of Hydrological Model and Machine Learning for Real-time Prediction of River Flood (수문모형과 기계학습을 연계한 실시간 하천홍수 예측)

  • Lee, Jae Yeong;Kim, Hyun Il;Han, Kun Yeun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.40 no.3
    • /
    • pp.303-314
    • /
    • 2020
  • The hydrological characteristics of watersheds and hydraulic systems of urban and river floods are highly nonlinear and contain uncertain variables. Therefore, the predicted time series of rainfall-runoff data in flood analysis is not suitable for existing neural networks. To overcome the challenge of prediction, a NARX (Nonlinear Autoregressive Exogenous Model), which is a kind of recurrent dynamic neural network that maximizes the learning ability of a neural network, was applied to forecast a flood in real-time. At the same time, NARX has the characteristics of a time-delay neural network. In this study, a hydrological model was constructed for the Taehwa river basin, and the NARX time-delay parameter was adjusted 10 to 120 minutes. As a result, we found that precise prediction is possible as the time-delay parameter was increased by confirming that the NSE increased from 0.530 to 0.988 and the RMSE decreased from 379.9 ㎥/s to 16.1 ㎥/s. The machine learning technique with NARX will contribute to the accurate prediction of flow rate with an unexpected extreme flood condition.

DEVELOPMENT OF A REAL-TIME FLOOD FORECASTING SYSTEM BY HYDRAULIC FLOOD ROUTING

  • Lee, Joo-Heon;Lee, Do-Hun;Jeong, Sang-Man;Lee, Eun-Tae
    • Water Engineering Research
    • /
    • v.2 no.2
    • /
    • pp.113-121
    • /
    • 2001
  • The objective of this study is to develop a prediction mode for a flood forecasting system in the downstream of the Nakdong river basin. Ranging from the gauging station at Jindong to the Nakdong estuary barrage, the hydraulic flood routing model(DWOPER) based on the Saint Venant equation was calibrated by comparing the calculated river stage with the observed river stages using four different flood events recorded. The upstream boundary condition was specified by the measured river stage data at Jindong station and the downstream boundary condition was given according to the tide level data observed at he Nakdong estuary barrage. The lateral inflow from tributaries were estimated by the rainfall-runoff model. In the calibration process, the optimum roughness coefficients for proper functions of channel reach and discharge were determined by minimizing the sum of the differences between the observed and the computed stage. In addition, the forecasting lead time on the basis of each gauging station was determined by a numerical simulation technique. Also, we suggested a model structure for a real-time flood forecasting system and tested it on the basis of past flood events. The testing results of the developed system showed close agreement between the forecasted and observed stages. Therefore, it is expected that the flood forecasting system we developed can improve the accuracy of flood forecasting on the Nakdong river.

  • PDF

River streamflow prediction using a deep neural network: a case study on the Red River, Vietnam

  • Le, Xuan-Hien;Ho, Hung Viet;Lee, Giha
    • Korean Journal of Agricultural Science
    • /
    • v.46 no.4
    • /
    • pp.843-856
    • /
    • 2019
  • Real-time flood prediction has an important role in significantly reducing potential damage caused by floods for urban residential areas located downstream of river basins. This paper presents an effective approach for flood forecasting based on the construction of a deep neural network (DNN) model. In addition, this research depends closely on the open-source software library, TensorFlow, which was developed by Google for machine and deep learning applications and research. The proposed model was applied to forecast the flowrate one, two, and three days in advance at the Son Tay hydrological station on the Red River, Vietnam. The input data of the model was a series of discharge data observed at five gauge stations on the Red River system, without requiring rainfall data, water levels and topographic characteristics. The research results indicate that the DNN model achieved a high performance for flood forecasting even though only a modest amount of data is required. When forecasting one and two days in advance, the Nash-Sutcliffe Efficiency (NSE) reached 0.993 and 0.938, respectively. The findings of this study suggest that the DNN model can be used to construct a real-time flood warning system on the Red River and for other river basins in Vietnam.

Flood Forecasting and Warning System using Real-Time Hydrologic Observed Data from the Jungnang Stream Basin (실시간 수문관측자료에 의한 돌발 홍수예경보 시스템 -중랑천 유역을 중심으로-)

  • Lee, Jong-Tae;Seo, Kyung-A;Hur, Sung-Chul
    • Journal of Korea Water Resources Association
    • /
    • v.43 no.1
    • /
    • pp.51-65
    • /
    • 2010
  • We suggest a simple and practical flood forecasting and warning system, which can predict change in the water level of a river in a small to medium-size watershed where flash flooding occurs in a short time. We first choose the flood defense target points, through evaluation of the flood risk of dike overflow and lowland inundation. Using data on rainfall, and on the water levels at the observed and prediction points, we investigate the interrelations and derive a regression formula from which we can predict the flood level at the target points. We calculate flood water levels through a calibrated flood simulation model for various rainfall scenarios, to overcome the shortage of real water stage data, and these results as basic population data are used to derive a regression formula. The values calculated from the regression formula are modified by the weather condition factor, and the system can finally predict the flood stages at the target points for every leading time. We also investigate the applicability of the prediction procedure for real flood events of the Jungnang Stream basin, and find the forecasting values to have close agreement with the surveyed data. We therefore expect that this suggested warning scheme could contribute usefully to the setting up of a flood forecasting and warning system for a small to medium-size river basin.

Monitoring Technology for Flood Forecasting in Urban Area (도시하천방재를 위한 지능형 모니터링에 관한 연구)

  • Kim, Hyung-Woo;Lee, Bum-Gyo
    • 한국방재학회:학술대회논문집
    • /
    • 2008.02a
    • /
    • pp.405-408
    • /
    • 2008
  • Up to now, a lot of houses, roads and other urban facilities have been damaged by natural disasters such as flash floods and landslides. It is reported that the size and frequency of disasters are growing greatly due to global warming. In order to mitigate such disaster, flood forecasting and alerting systems have been developed for the Han river, Geum river, Nak-dong river and Young-san river. These systems, however, do not help small municipal departments cope with the threat of flood. In this study, a real-time urban flood forecasting service (U-FFS) is developed for ubiquitous computing city which includes small river basins. A test bed is deployed at Tan-cheon in Gyeonggido to verify U-FFS. It is found that U-FFS can forecast the water level of outlet of river basin and provide real-time data through internet during heavy rain. Furthermore, it is expected that U-FFS presented in this study can be applied to ubiquitous computing city (u-City) and/or other cities which have suffered from flood damage for a long time.

  • PDF

Application and Comparison of Dynamic Artificial Neural Networks for Urban Inundation Analysis (도시침수 해석을 위한 동적 인공신경망의 적용 및 비교)

  • Kim, Hyun Il;Keum, Ho Jun;Han, Kun Yeun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.38 no.5
    • /
    • pp.671-683
    • /
    • 2018
  • The flood damage caused by heavy rains in urban watershed is increasing, and, as evidenced by many previous studies, urban flooding usually exceeds the water capacity of drainage networks. The flood on the area which considerably urbanized and densely populated cause serious social and economic damage. To solve this problem, deterministic and probabilistic studies have been conducted for the prediction flooding in urban areas. However, it is insufficient to obtain lead times and to derive the prediction results for the flood volume in a short period of time. In this study, IDNN, TDNN and NARX were compared for real-time flood prediction based on urban runoff analysis to present the optimal real-time urban flood prediction technique. As a result of the flood prediction with rainfall event of 2010 and 2011 in Gangnam area, the Nash efficiency coefficient of the input delay artificial neural network, the time delay neural network and nonlinear autoregressive network with exogenous inputs are 0.86, 0.92, 0.99 and 0.53, 0.41, 0.98 respectively. Comparing with the result of the error analysis on the predicted result, it is revealed that the use of nonlinear autoregressive network with exogenous inputs must be appropriate for the establishment of urban flood response system in the future.

Development and Assessment of Flow Nomograph for the Real-time Flood Forecasting in Cheonggye Stream (청계천 실시간 홍수예보를 위한 Flow Nomograph 개발 및 평가)

  • Bae, Deg-Hyo;Shim, Jae Bum;Yoon, Seong-Sim
    • Journal of Korea Water Resources Association
    • /
    • v.45 no.11
    • /
    • pp.1107-1119
    • /
    • 2012
  • The objectives of this study are to develop the flow nomograph for real-time flood forecasting and to assess its applicability in restored Cheonggye stream. The Cheonggye stream basin has the high impermeability and short concentration time and complicated hydrological characteristics. Therefore, the flood prediction method using runoff model is ineffective due to the limit of forecast. Flow nomograph which is able to forecast flood only with rainfall information. To set the forecast criteria of flow nomograph at selected flood forecast points and calculated criterion flood water level for each point, and in order to reflect various flood events set up simulated rainfall scenario and calculated rainfall intensity and rainfall duration time for each condition of rainfall. Besides, using a rating curve, determined scope of flood discharge following criterion flood water level and using SWMM model calculated flood discharge for each forecasting point. Using rainfall information following rainfall scenario calculated above and flood discharge following criterion flood water level developed flow nomograph and evaluated it by applying it to real flood event. As a result of performing this study, the applicability of flow nomograph to the basin of Cheonggye stream appeared to be high. In the future, it is reckoned to have high applicability as a method of prediction of flood of urban stream basin like Cheonggye stream.