Flooding is one of the most serious and frequently occurred natural disaster at many regions around the world. Especially, under the climate change impact, it is more and more increasingly trend. To reduce the flood damage, flood forecast and its accuracy analysis are required. This study is conducted to analyze the accuracy of the real-time flood forecasting of a coupled meteo-hydrological model for the Han River basin, South Korea. The LDAPS (Local Data Assimilation and Prediction System) products with the spatial resolution of 1.5km and lead time of 36 hours are extracted and used as inputs for the SURR (Sejong University Rainfall-Runoff) model. Three statistical criteria consisting of CC (Corelation Coefficient), RMSE (Root Mean Square Error) and ME (Model Efficiency) are used to evaluate the performance of this couple. The results are expected that the accuracy of the flood forecasting reduces following the increase of lead time corresponding to the accuracy reduction of LDAPS rainfall. Further study is planed to improve the accuracy of the real-time flood forecasting.
이상 기후로 인한 자연 재해는 지속적으로 증가하고 있으며, 자연재해 중 가장 많은 피해를 입히는 유형은 폭우, 태풍 등으로 인한 수해 피해로 이러한 재해는 홍수를 동반하여 더욱 큰 피해를 입히기도 한다. 따라서, 홍수 피해를 줄이기 위해 본 논문에서는 LSTM과 GRU를 활용하여 실시간으로 홍수의 주요 파라미터인 수위를 실시간으로 예측할 수 있는 시스템을 제안한다. 홍수 예측을 위해 사용된 입력 데이터는 하천의 상류 및 하류 수위, 기온, 습도, 강수량이 사용되며, 사전에 학습된 LSTM-GRU 모델을 통해 실시간 예측을 진행한다. 입력 데이터는 과거 20시간의 데이터를 활용하여 향후 3시간의 수위를 예측한다. 본 논문에서 제안한 시스템을 통해 위험도 판별 기능을 추가하고 홍수에 노출된 사람들에게 대피 명령을 내릴 수 있다면 홍수로 인한 많은 피해를 줄일 수 있을 것으로 사료된다.
In recent, flood inundation damages by hydraulic structure failures have increased drastically and thus a variety of countermeasures were needed to minimize such damages. A real-time flood inundation prediction technique is essential to protect and mitigate flood inundation damages. In the context of real time flood inundation modeling, this study aims to develop a grid based two-dimensional numerical method for flood inundation modeling using globally-available DEM data: SRTM with $90m{\times}90m$ spatial resolution. The newly-developed model guarantees computational efficiency in terms of geometric data processing by direct application of DEM for flood inundation modeling and also have good compatibility with various types of raster data when compared to a commercial model such as FLUMEN. The model, which employed the leap-frog algorithm to solve shallow water and continuity equations, can simulate inundating flow from channel to lowland and also returning flow from lowland to channel by comparing water levels between channel and lowland in real time. We applied the model to simulate the BaekSan levee break in the Nam river during a flood period from August 10 to 13, 2002. The simulation results had good agreements with the field-surveyed data in terms of inundated area and also showed physically-acceptable velocity vector maps with respect to inundating and returning flows.
수자원분야에서 이용되는 강우에 따른 유역의 수문학적 시스템, 도시지역 및 하천에 대한 수리학적 시스템은 비선형성이 강하고 많은 변수들을 포함하고 있다. 이러한 특성을 가진 시계열 자료에서 기계학습을 통한 예측은 예측시점 이전의 자료 특성을 반영하지 못하는 등 기본적인 신경망으로는 부족한 상황이 발생하기도 한다. 본 연구에서 적용할 강우-유출량과 같이 비선형성이 강하고 시간종속성이 높은 복잡한 시계열 자료를 예측하기 위해 신경망의 학습능력을 극대화한 순환형 동적 신경망(Recurrent Dynamic Neural Network)의 한 종류인 동시에, 시간 지연 신경망(Time-Delay Neural Network)의 특성을 가진 비선형 자기회귀(NARX, Nonlinear Autoregressive Exogenous Model) 인공신경망을 사용하였다. 이를 태화강 지방하천 구간에 적용하여 NARX 인공신경망의 시간 지연 매개변수를 10분에서 120분까지 조정하며 모의한 결과에 대해 여러 통계지표를 이용해 정량적으로 평가하였다. 그 결과 지연시간이 증가할수록 효율계수(NSE)가 0.530에서 0.988으로 증가하고, 평균제곱근편차(RMSE)가 379.9 ㎥/s에서 16.1 ㎥/s로 감소하는 등 정교한 예측이 가능함을 확인하였다.
The objective of this study is to develop a prediction mode for a flood forecasting system in the downstream of the Nakdong river basin. Ranging from the gauging station at Jindong to the Nakdong estuary barrage, the hydraulic flood routing model(DWOPER) based on the Saint Venant equation was calibrated by comparing the calculated river stage with the observed river stages using four different flood events recorded. The upstream boundary condition was specified by the measured river stage data at Jindong station and the downstream boundary condition was given according to the tide level data observed at he Nakdong estuary barrage. The lateral inflow from tributaries were estimated by the rainfall-runoff model. In the calibration process, the optimum roughness coefficients for proper functions of channel reach and discharge were determined by minimizing the sum of the differences between the observed and the computed stage. In addition, the forecasting lead time on the basis of each gauging station was determined by a numerical simulation technique. Also, we suggested a model structure for a real-time flood forecasting system and tested it on the basis of past flood events. The testing results of the developed system showed close agreement between the forecasted and observed stages. Therefore, it is expected that the flood forecasting system we developed can improve the accuracy of flood forecasting on the Nakdong river.
Real-time flood prediction has an important role in significantly reducing potential damage caused by floods for urban residential areas located downstream of river basins. This paper presents an effective approach for flood forecasting based on the construction of a deep neural network (DNN) model. In addition, this research depends closely on the open-source software library, TensorFlow, which was developed by Google for machine and deep learning applications and research. The proposed model was applied to forecast the flowrate one, two, and three days in advance at the Son Tay hydrological station on the Red River, Vietnam. The input data of the model was a series of discharge data observed at five gauge stations on the Red River system, without requiring rainfall data, water levels and topographic characteristics. The research results indicate that the DNN model achieved a high performance for flood forecasting even though only a modest amount of data is required. When forecasting one and two days in advance, the Nash-Sutcliffe Efficiency (NSE) reached 0.993 and 0.938, respectively. The findings of this study suggest that the DNN model can be used to construct a real-time flood warning system on the Red River and for other river basins in Vietnam.
본 연구에서는 도달시간이 짧은 중소하천유역에서 돌발홍수 발생시 강우에 따른 하천의 수위변화를 신속하고 간편하게 예측하는 홍수예경보 모형을 제시하고 그 적정성을 중랑천 유역에 대해서 검토하였다. 이를 위하여 먼저, 제방안전도 평가와 침수위험구역 조사를 통해 홍수방어목표지점으로 선정하였다. 강우량 및 관측지점수위와 홍수방어 목표지점 수위와의 상관성 분석을 하였으며, 이로부터 홍수방어목표(예보지점)지점의 수위변화를 예측할 수 있는 회귀모형을 산정하였다. 이 때 기초자료로서의 실제강우 조건에 따른 실측 수위자료는 그 범위와 조건의 수가 너무 작음으로, 이를 대신하여 다양한 강우시나리오별 유출분석을 통하여 홍수위들을 산정하고 이를 상관성 분석의 모집단 자료로 사용하였다. 산정된 회귀모형으로부터 적정 선행예보시간에 대한 수위를 산정하고 기상보정계수를 고려하여 예측수위를 보정 결정하는 방안을 제시하였다. 예측수위가 주위보수위(Flood watching level; 계획홍수량의 50 %의 수위)를 초과하는 경우에 예경보를 수행할 수 있는 시스템을 구성하였으며, 실제 호우사항에 대하여 그 적용성을 검토하였다.
Up to now, a lot of houses, roads and other urban facilities have been damaged by natural disasters such as flash floods and landslides. It is reported that the size and frequency of disasters are growing greatly due to global warming. In order to mitigate such disaster, flood forecasting and alerting systems have been developed for the Han river, Geum river, Nak-dong river and Young-san river. These systems, however, do not help small municipal departments cope with the threat of flood. In this study, a real-time urban flood forecasting service (U-FFS) is developed for ubiquitous computing city which includes small river basins. A test bed is deployed at Tan-cheon in Gyeonggido to verify U-FFS. It is found that U-FFS can forecast the water level of outlet of river basin and provide real-time data through internet during heavy rain. Furthermore, it is expected that U-FFS presented in this study can be applied to ubiquitous computing city (u-City) and/or other cities which have suffered from flood damage for a long time.
도시유역에 대한 집중호우에 따른 침수피해가 증가하고 있으며, 기존에 수행된 많은 연구에서 입증 되어진 바와 같이 도시 침수는 하수관망의 통수능을 상회함에 따라 발생하는 내수침수에 주로 기인하고 있다. 도시화가 상당히 진행되고 인구가 밀집되어 있는 지역에 대한 침수피해는 심각한 사회 경제적 피해를 야기한다. 이에 따라 도시지역에 대한 홍수 예측을 위한 확정 및 확률론적 연구가 진행되어 왔지만, 충분한 선행시간을 확보하며 단시간에 홍수량에 대한 예측결과를 도출하기에는 부족한 실정이다. 본 연구에서는 최적의 실시간 도시 홍수 예측 기법을 제시하기 위하여 도시유출해석 기반 실시간 홍수 예측을 위한 IDNN, TDNN 그리고 NARX 동적신경망을 비교하였다. 강남 지역의 2010, 2011년 실제 호우사상에 대하여 총 홍수량 예측 결과, 입력 지연 인공신경망의 최대 Nash-Sutcliffe 효율 계수는 각각 0.86, 0.53, 시간 지연 인공신경망의 경우 0.92, 0.41, 외생변수를 이용한 비선형 자기 회귀의 경우 0.99, 0.98으로 나타났다. 연구 대상지역에 대한 각 맨홀 누적월류량을 고려한 예측 결과의 오차분석을 통하여 외생변수를 이용한 비선형 자기 회귀 기법을 사용하는 것이 추후 도시 홍수 대응체계 구축에 적합할 것으로 나타났다.
본 연구의 목적은 도시하천으로 복원된 청계천유역의 실시간 홍수예보를 위한 flow nomograph를 개발하고, 실측자료를 통해 flow nomograph의 적용성을 검토하는데 있다. 본 연구의 적용대상 지역인 청계천 유역은 높은 불투수율, 짧은 도달시간 및 복잡한 수문학적 특성을 갖고 있어 기존 강우-유출 모형에 의한 홍수예측 방법의 선행시간 확보 측면에서 실효성을 거두지 못하고 있는 실정이다. 이에 본 연구에서는 홍수예보 선행시간을 확보하기 위해 강우정보만으로도 홍수예보가 가능한 flow nomograph를 개발하였다. Flow nomograph는 강우강도, 강우지속시간 등의 강우변수와 유량, 수위간의 상관관계를 구한 것이다. 본 연구에서는 Flow nomograph 개발과정에서 예보 기준 설정을 위해 홍수예보 지점을 선정하여 지점별 기준 홍수위를 산정하였으며, 다양한 홍수사상을 반영하기 위해 가상 강우시나리오를 설정하여 강우조건별 강우강도와 강우지속시간을 산정하였다. 또한 수위-유량관계 곡선식을 이용하여 기준 홍수위에 따라 홍수량 범위를 결정하고, SWMM모형을 이용하여 강우조건에 따른 지점별 홍수량을 산정하여 예보지점별로 기준홍수 위에 따른 홍수량을 산정하였다. 산정된 강우 시나리오에 따른 강우정보와 기준 홍수위에 따른 홍수량을 이용하여 flow nomograph를 개발하였으며, 이를 실제 홍수사상에 적용하여 평가하였다. 평가 결과 청계천 유역에 대해 flow nomograph의 적용성이 높은 것으로 나타났다. 향후 청계천과 같은 도시하천유역의 홍수예측 방법으로 활용도가 높을 것으로 판단된다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.