• Title/Summary/Keyword: Real-time control task

Search Result 215, Processing Time 0.021 seconds

Synthesizing multi-loop control systems with period adjustment and Kernel compilation (주기 조정과 커널 자동 생성을 통한 다중 루프 시스템의 구현)

  • Hong, Seong-Soo;Choi, Chong-Ho;Park, Hong-Seong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.3 no.2
    • /
    • pp.187-196
    • /
    • 1997
  • This paper presents a semi-automatic methodology to synthesize executable digital controller saftware in a multi-loop control system. A digital controller is described by a task graph and end-to-end timing requirements. A task graph denotes the software structure of the controller, and the end-to-end requirements establish timing relationships between external inputs and outputs. Our approach translates the end-to-end requirements into a set of task attributes such as task periods and deadlines using nonlinear optimization techniques. Such attributes are essential for control engineers to implement control programs and schedule them in a control system with limited resources. In current engineering practice, human programmers manually derive those attributes in an ad hoc manner: they often resort to radical over-sampling to safely guarantee the given timing requirements, and thus render the resultant system poorly utilized. After task-specific attributes are derived, the tasks are scheduled on a single CPU and the compiled kernel is synthesized. We illustrate this process with a non-trivial servo motor control system.

  • PDF

A Study on the Distributed Real-time Mobile Robot System using TCP/IP and Linux (Linux와 TCP/IP를 이용한 분산 실시간 이동로봇 시스템 구현에 관한 연구)

  • 김주민;김홍렬;양광웅;김대원
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.9 no.10
    • /
    • pp.789-797
    • /
    • 2003
  • An implementation scheme and some improvements are proposed to adopt public-licensed operating system, Linux and de-facto world-wide network standard, TCP/IP into the field of behavior-based autonomous mobile robots. To demonstrate the needs of scheme and the improvement, an analysis is performed on a server/client communication problem with real time Linux previously proposed, and another analysis is also performed on interactions among TCP/IP communications and the performance of Linux system using them. Implementation of behavior-based control architecture on real time Linux is proposed firstly. Revised task-scheduling schemes are proposed that can enhance the performance of server/client communication among local tasks on a Linux platform. A new method of TCP/IP packet flow handling is proposed that prioritizes TCP/IP software interrupts with aperiodic server mechanism as well. To evaluate the implementation scheme and the proposed improvements, performance enhancements are shown through some simulations.

Elderly Assistance System Development based on Real-time Embedded Linux (실시간 임베디드 리눅스 기반 노약자 지원 로봇 개발)

  • Koh, Jae-Hwan;Yang, Gil-Jin;Choi, Byoung-Wook
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.19 no.11
    • /
    • pp.1036-1042
    • /
    • 2013
  • In this paper, an elderly assistance system is developed based on Xenomai, a real-time development framework cooperating with the Linux kernel. A Kinect sensor is used to recognize the behavior of the elderly and A-star search algorithm is implemented to find the shortest path to the person. The mobile robot also generates a trajectory using a digital convolution operator which is based on a Bezier curve for smooth driving. In order to follow the generated trajectory within the control period, we developed real-time tasks and compared the performance of the tracking trajectory with that of non real-time tasks. The real-time task has a better result on following the trajectory within the physical constraints which means that it is more appropriate to apply to an elderly assistant system.

Model Based Design and Validation of Control Systems using Real-time Operating System (실시간 운영체제를 적용한 제어시스템의 모델기반 설계 및 검증)

  • Youn, Jea-Myoung;Ma, Joo-Young;SunWoo, Myoung-Ho;Lee, Woo-Taik
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.16 no.2
    • /
    • pp.8-17
    • /
    • 2008
  • This paper presents the Matlab/Simulink-based software-in-the-loop simulation(SILS) environment which is the co-simulator for temporal and functional simulations of control systems. The temporal behavior of a control system is strongly dependent on the implemented software and hardware such as the real-time operating system, the target CPU, and the communication protocol. The proposed SILS abstracts the system with tasks, task executions, real-time schedulers, and real-time networks close to the implementation. Methods to realize these components in graphical block representations are investigated with Matlab/Simulink, which is most commonly used tool for designing and simulating control algorithms in control engineering. In order to achieve a seamless development from SILS to rapid control prototyping (RCP), the SILS block-set is designed to support automatic code generation without tool changes and block modifications.

Real-Time Characteristics Analysis and Improvement for OPRoS Component Scheduler on Windows NT Operating System (Windows NT상에서의 OPRoS 컴포넌트 스케줄러의 실시간성 분석 및 개선)

  • Lee, Dong-Su;Ahn, Hee-June
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.1
    • /
    • pp.38-46
    • /
    • 2011
  • The OPRoS (Open Platform for Robotic Service) framework provides uniform operating environment for service robots. As an OPRoS-based service robot has to support real-time as well as non-real-time applications, application of Windows NT kernel based operating system can be restrictive. On the other hand, various benefits such as rich library and device support and abundant developer pool can be enjoyed when service robots are built on Windows NT. The paper presents a user-mode component scheduler of OPRoS, which can provide near real-time scheduling service on Windows NT based on the restricted real-time features of Windows NT kernel. The component scheduler thread with the highest real-time priority in Windows NT system acquires CPU control. And then the component scheduler suspends and resumes each periodic component executors based on its priority and precedence dependency so that the component executors are scheduled in the preemptive manner. We show experiment analysis on the performance limitations of the proposed scheduling technique. The analysis and experimental results show that the proposed scheduler guarantees highly reliable timing down to the resolution of 10ms.

Design and Implementation of an Android Application for Real-time Motion Control (실시간 정밀 모션 제어를 위한 안드로이드 응용 설계 및 구현)

  • Kim, Dohyeon;Kang, Hyeongseok;Kang, Jeongnam;Lee, Eungyu;Kim, Kanghee
    • KIISE Transactions on Computing Practices
    • /
    • v.21 no.4
    • /
    • pp.315-319
    • /
    • 2015
  • This paper addresses the design and implementation of an Android application for real-time precise motion control. To provide stable real-time performance, we implemented the application in two parts: Android service in the form of a daemon process, which periodically transfers a set of position commands for all motors through a real-time fieldbus, and Android UI application, which generates and delivers the set of position commands to the Android service. To support such a real-time motion control application, we use multi-core partitioning, which partitions the processor cores into a real-time partition to be used by the real-time motion control service and a non-real-time partition to be used by the Android application, and set up a shared buffer between them for communication. Our experiments show that we can obtain a motion control period of 2 ms with 99% task activation jitters less than ${\pm}55{\mu}s$ for a configuration where each of the four threads controls two motors in a group.

Design and Implementation of Digital Motor Control Center Including Load Control Function (부하제어 기능을 갖는 디지털형 전동기제어반의 설계 및 구현)

  • 우천희;강신준;이덕규;구영모;김학배;이성환
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.5 no.7
    • /
    • pp.868-875
    • /
    • 1999
  • In this paper, digital motor control center using protection relay is developed in order to protect power systems by means of timely fault detection and diagnosis during operation for induction motor which have various load environments and capacities in power systems. Digital motor control center is employed by power supervisory control systems without separate remote terminal unit and transducers adding communicational ability. Also we develope a maximum demand controller to control the load effectively at peak status and a power factor controller to minimize real power losses and improve the power factor. Therefore, when using the developed controller, real time computation is possible by loading DSP in hardware and applying real-time kernel which can convert each algorithm to task module.

  • PDF

An Overrun Control Method and its Synthesis Method for Real-Time Systems with Probabilistic Timing Constraints (확률적인 시간 제약 조건을 갖는 실시간 시스템을 위한 과실행 제어 및 합성 기법)

  • Kim, Kang-Hee;Hwang, Ho-Young
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.32 no.5
    • /
    • pp.243-254
    • /
    • 2005
  • Soft real-time applications such as multimedia feature highly variable processor requirements and probabilistic guarantees on deadline misses, meaning that each task in the application meets its deadline with a given probability. Thus, for such soft real-time applications, a system designer may want to improve the system utilization by allocating to each task a processor time less than its worst-case requirement, as long as the imposed probabilistic timing constraint is met. In this case, however, we have to address how to schedule jobs of a task that require more than (or, overrun) the allocated processor time to the task. In this paper, to address the overrun problem, we propose an overrun control method, which probabilistically controls the execution of overrunning jobs. The proposed overrun control method probabilistically allows overrunning jobs to complete for better system utilization, and also probabilistically prevents the overrunning jobs from completing so that the required probabilistic timing constraint for each task can be met. In the paper, we show that the proposed method outperforms previous methods proposed in the literature in terms of the overall deadline miss ratio, and that it is possible to synthesize the scheduling parameters of our method so that all tasks can meet the given probabilistic timing constraints.

High Speed Precision Control of Mobile Robot using Neural Network in Real Time (신경망을 이용한 이동 로봇의 실시간 고속 정밀제어)

  • 주진화;이장명
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.5 no.1
    • /
    • pp.95-104
    • /
    • 1999
  • In this paper we propose a fast and precise control algorithm for a mobile robot, which aims at the self-tuning control applying two multi-layered neural networks to the structure of computed torque method. Through this algorithm, the nonlinear terms of external disturbance caused by variable task environments and dynamic model errors are estimated and compensated in real time by a long term neural network which has long learning period to extract the non-linearity globally. A short term neural network which has short teaming period is also used for determining optimal gains of PID compensator in order to come over the high frequency disturbance which is not known a priori, as well as to maintain the stability. To justify the global effectiveness of this algorithm where each of the long term and short term neural networks has its own functions, simulations are peformed. This algorithm can also be utilized to come over the serious shortcoming of neural networks, i.e., inefficiency in real time.

  • PDF

Study on the implementation of fieldbus network in the manufacturing automation system (생산자동화 시스템에서 필드버스 네트워크 구축 기술 연구)

  • 김기암;홍승호;김지용;고성준
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.1020-1023
    • /
    • 1996
  • Fieldbus provides real-time data communication among field devices in the process control and manufacturing automation systems. This paper presents an implementation method of Profibus in the experimental model of manufacturing automation system. The manufacturing automation system considered in this paper consists of robots, NC machines, sensors, conveyers and PCs. The application task programs are developed on the basis of FMS/FMA7 communication services which are provided by Profibus application layer. The communication and application programs are developed in the real-time environment.

  • PDF