본 논문은 인터넷 상에서 동기화된 실시간 미디어 멀티캐스트 서비스에 적합한 오버레이 멀티캐스트 트리를 구성하는 알고리즘을 제안한다. 제안하는 알고리즘은 멀티캐스트 송신 단에서 각 종단 시스템 사이의 전송 지연에 대한 평균과 변이를 최소화하는 트리 구성을 찾는다. 그러나 위의 문제는 NP-완전하므로, 이러한 문제의 계산 복잡도를 낮추면서, 근사해를 찾기 위한 방법으로 OGA (Orthogonal Genetic Algorithm)을 이용하였다. 실험 결과에서 제안하는 알고리즘이 기존 알고리즘에 비해 통기화된 실시간 미디어 데이터 전송을 위한 효과적인 트리를 구성한다는 것을 보인다.
For the last five years, data mining has drawn much attention by researchers and practitioners because of its many applicable domains. This article presents an adaptive decision tree algorithm for dynamically reasoning machine failure cause out of real-time, large-scale machine status database. Among many data mining methods, intelligent decision tree building algorithm is especially of interest in the sense that it enables the automatic generation of decision rules from the tree, facilitating the construction of expert system. On the basis of experiment using semiconductor etching machine, it has been verified that our model outperforms previously proposed decision tree models.
The 8th International Conference on Construction Engineering and Project Management
/
pp.463-481
/
2020
Cutter suction dredgers (CSDs) are widely used in various dredging constructions such as channel excavation, wharf construction, and reef construction. During a CSD construction, the main operation is to control the swing speed of cutter to keep the slurry concentration in a proper range. However, the slurry concentration cannot be monitored in real-time, i.e., there is a "time-lag effect" in the log of slurry concentration, making it difficult for operators to make the optimal decision on controlling. Concerning this issue, a solution scheme that using real-time monitored indicators to predict current slurry concentration is proposed in this research. The characteristics of the CSD monitoring data are first studied, and a set of preprocessing methods are presented. Then we put forward the concept of "index class" to select the important indices. Finally, an ensemble learning algorithm is set up to fit the relationship between the slurry concentration and the indices of the index classes. In the experiment, log data over seven days of a practical dredging construction is collected. For comparison, the Deep Neural Network (DNN), Long Short Time Memory (LSTM), Support Vector Machine (SVM), Random Forest (RF), Gradient Boosting Decision Tree (GBDT), and the Bayesian Ridge algorithm are tried. The results show that our method has the best performance with an R2 of 0.886 and a mean square error (MSE) of 5.538. This research provides an effective way for real-time predicting the slurry concentration of CSDs and can help to improve the stationarity and production efficiency of dredging construction.
Several prediction model of penetration rate (PR) of tunnel boring machines (TBMs) have been focused on applying to design stage. In construction stage, however, the expected PR and its trends are changed during tunneling owing to TBM excavation skills and the gap between the investigated and actual geological conditions. Monitoring the PR during tunneling is crucial to rescheduling the excavation plan in real-time. This study proposes a sequential prediction method applicable in the construction stage. Geological and TBM operating data are collected from Gunpo cable tunnel in Korea, and preprocessed through normalization and augmentation. The results show that the sequential prediction for 1 ring unit prediction distance (UPD) is R2≥0.79; whereas, a one-step prediction is R2≤0.30. In modeling algorithm, a gradient boosted regression tree (GBRT) outperformed a least square-based linear regression in sequential prediction method. For practical use, a simple equation between the R2 and UPD is proposed. When UPD increases R2 decreases exponentially; In particular, UPD at R2=0.60 is calculated as 28 rings using the equation. Such a time interval will provide enough time for decision-making. Evidently, the UPD can be adjusted depending on other project and the R2 value targeted by an operator. Therefore, a calculation process for the equation between the R2 and UPD is addressed.
Journal of information and communication convergence engineering
/
제20권3호
/
pp.160-165
/
2022
This paper proposes an efficient method of reconstructing interconnections when the terminals of each plane change in real-time situations where randomly divided planes are interconnected. To connect all terminals when the terminals of each plane are changed, we usually reconstruct the interconnections between all terminals. This ensures a minimum connection length, but it takes considerable time to reconstruct the interconnection for the entire terminal. This paper proposes a solution to obtain an optimal tree close to the minimum spanning tree (MST) in a short time. The construction of interconnections has been used in various design-related areas, from networks to architecture. One of these areas is an ad hoc network that only consists of mobile hosts and communicates with each other without a fixed wired network. Each host of an ad hoc network may appear or disappear frequently. Therefore, the heuristic proposed in this paper may expect various cost savings through faster interconnection reconstruction using the given information in situations where the connection target is changing.
Learning effect is an observation that the more times a task is performed, the less time is required to produce the same amount of outcomes. The construction industry heavily relies on repeated tasks where the learning effect is an important measure to be used. However, most construction durations are calculated and applied in real projects without considering the learning effects in each of the repeated activities. This paper applied the learning effect to the repeated activities in a small sized apartment construction project. The result showed that there was about 10 percent of difference in duration (one approach of the total duration with learning effects in 41 days while the other without learning effect in 36.5 days). To make the comparison between the two approaches, a large number of BIM based computer simulations were generated and useful patterns were recognized using machine learning algorithm named Decision Tree (See5). Machine learning is a data-driven approach for pattern recognition based on observational evidence.
인터넷 방송에서 그룹간의 통신을 위해서는 효율적이고 확장 가능한 멀티캐스트 메커니즘이 필요하다. 오버레이 멀티캐스트의 성능 향상을 위해서는 멀티캐스트 트리의 최적화가 요구된다. 이러한 최적화 문제는 NP-complete로 알려져 있다. 따라서 오버레이 멀티캐스트 트리의 각 노드들이 out-degree가 제한되어 있을 경우, 새로운 참여자는 이미 그룹에 참여된 사용자들 중 자신에게 적합한 부모노드를 효율적으로 찾아 그룹참여를 하여야 한다. 본 논문에서는 트리기반의 오버레이 멀티캐스트 구성 시, 새로운 사용자는 루트노드와의 지연시간을 측정하여 level을 설정한다. 이 후 새로운 사용자는 ACK-SEND기법을 사용하여 후보 부모노드를 효과적으로 찾고 level값을 비교하여 자신에 적합한 위치를 찾아 참여하게 된다. 각각의 노드들은 제공자 노드와 가까운 노드일수록 트리 깊이가 낮은 곳에 위치하게 된다. 또한 장애 발생 시, ACK-SEND기법을 사용하여 빠른 복구를 보장할 수 있다. 결국 신규 노드는 효율적이고 빠르게 멀티캐스트 트리에서 적합한 위치를 찾아 참여가 이뤄지는 장점이 있다.
인터넷에서 멀티미디어 서비스를 지원하기 위한 멀티캐스트 프로토콜은 트리 구성 방식에 따라 공유 트리 방식과 소스 기반 트리 방식으로 나눌 수 있는데, 공유 트리 방식이 확장성 측면에서 보다 우수하다고 알려져 있다. 공유 트리 방식에서 QoS를 만족시키기 위해 고려해야 할 핵심 사항 중 하나인 RP (Rendezvous Point) 선정에 대하여 일반적으로 QoS 제약 조건에 따라 별도의 과정을 거쳐 RP를 계산하는 방식으로 연구가 되고 있다. 또한 멀티캐스트 그룹 멤버가 동적으로 가입 또는 탈퇴를 할 경우에는 초기에 설정된 RP가 신규 멤버까지는 QoS를 만족시키지 못하는 경우가 발생하게 되므로, 신규멤버 까지 QoS를 보장하는 새로운 RP를 재선정할 필요가 있는데, RP재선정에 관한 기존 연구는 매우 미흡한 실정이다. 본 논문에서는 공유 트리 방식에서 RP 초기 선정 방식과 RP 재선정 방식에 RTCP(Real Time Control Protocol) 패킷을 이용하는 새로운 기법을 제안한다. 본 논문에서 제안하는 방식은 멀티미디어 서비스를 제공할 때 이용하는 RTCP 패킷을 그대로 활용함으로써 RP계산을 위한 별도의 정보 수집 과정을 필요로 하지 않는다. 모의 실험을 통하여 제안된 방식이 초기 RP선정 시 에는 임의 선정, 위상 기반 선정 방식보다 40∼50% 정도, 멀티캐스트 그룹멤버의 동적 변화 시에는 초기 RP를 그대로 이용하는 방식보다 50% 정도의 개선 효과를 보였다.
KSII Transactions on Internet and Information Systems (TIIS)
/
제6권12호
/
pp.3219-3236
/
2012
A tree routing structure is often adopted for many-to-one data gathering and aggregation in sensor networks. For real-time scenarios, considering lossy wireless links, it is an important issue how to construct a maximum-lifetime data gathering tree with delay constraint. In this work, we study the problem of lifetime-preserving and delay-constrained tree construction in unreliable sensor networks. We prove that the problem is NP-complete. A greedy approximation algorithm is proposed. We use expected transmissions count (ETX) as the link quality indicator, as well as a measure of delay. Our algorithm starts from an arbitrary least ETX tree, and iteratively adjusts the hierarchy of the tree to reduce the load on bottleneck nodes by pruning and grafting its sub-tree. The complexity of the proposed algorithm is $O(N^4)$. Finally, extensive simulations are carried out to verify our approach. Simulation results show that our algorithm provides longer lifetime in various situations compared to existing data gathering schemes.
Kim, Kang-Wook;Park, Myung-Gon;Han, Junghee;Lee, Chang-Gun
Journal of Computing Science and Engineering
/
제9권2호
/
pp.83-97
/
2015
IEEE 802.15.4 is a global standard designed for emerging applications in low-rate wireless personal area networks (LR-WPANs). The standard provides beneficial features, such as a beacon-enabled mode and guaranteed time slots for realtime data delivery. However, how to optimally operate those features is still an open issue. For the optimal operation of the features, this paper proposes a holistic optimization method that jointly optimizes three cross-related problems: cluster-tree construction, nodes' power configuration, and duty-cycle scheduling. Our holistic optimization method provides a solution for those problems so that all the real-time packets can be delivered within their deadlines in the most energy-efficient way. Our simulation study shows that compared to existing methods, our holistic optimization can guarantee the on-time delivery of all real-time packets while significantly saving energy, consequently, significantly increasing the lifetime of the network. Furthermore, we show that our holistic optimization can be extended to take advantage of the spatial reuse of a radio frequency resource among long distance nodes and, hence, significantly increase the entire network capacity.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.