
J. lnf. Commun. Converg. Eng. 20(3): 160-165, Sep. 2022 Regular paper
Optimal Terminal Interconnection Reconstruction along with
Terminal Transition in Randomly Divided Planes

Jiwon Youn and Byungyeon Hwang* , Member, KIICE

School of Computer Science and Information Engineering, The Catholic University of Korea, Bucheon 14662, Korea

Abstract

This paper proposes an efficient method of reconstructing interconnections when the terminals of each plane change in real-time

situations where randomly divided planes are interconnected. To connect all terminals when the terminals of each plane are

changed, we usually reconstruct the interconnections between all terminals. This ensures a minimum connection length, but it

takes considerable time to reconstruct the interconnection for the entire terminal. This paper proposes a solution to obtain an

optimal tree close to the minimum spanning tree (MST) in a short time. The construction of interconnections has been used in

various design-related areas, from networks to architecture. One of these areas is an ad hoc network that only consists of mobile

hosts and communicates with each other without a fixed wired network. Each host of an ad hoc network may appear or disappear

frequently. Therefore, the heuristic proposed in this paper may expect various cost savings through faster interconnection

reconstruction using the given information in situations where the connection target is changing.

Index Terms: Ad-hoc network, Minimum spanning Tree, Tinkered Tree, Terminal interconnection problem

I. INTRODUCTION

The construction of a maximum interconnection of ele-

ments distributed within a given space is a problem abstracted

in various industrial fields, from networks to architecture [1-

3]. In this interconnection construction, connecting all termi-

nals using the minimum length can be obtained using the

minimum cost spanning tree (MST) algorithm [4-5]. How-

ever, using the MST algorithm requires considerable time [6-

7]. This paper defines a tinkered tree as an optimal tree that

connects all terminals faster than the MST algorithm.

As Internet has developed, some networks have undergone

dynamic changes. A network with connected terminals can

be inserted or deleted frequently, such as an ad hoc network.

Ad-hoc networks are aggregates of wireless mobile nodes

without an existing network infrastructure or centralized

management. Building an MST whenever terminals are

changed takes a lot of time. Therefore, a heuristic that

responds to changes in terminals must apply a tinkered tree

to such a dynamic situation [8].

This paper considers a situation where the terminal status

of divided planes changes in real-time when each plane

forms a tinkered tree. In this situation, a heuristic was pro-

posed to connect all terminals faster than the MST algo-

rithm. This heuristic can be used in cases responding quickly

to frequent network changes when networks operated region-

ally on a large area in the real world are connected. So, we

can expect an efficient CDS (connected dominating set)

composition of an Ad-hoc wireless network consisting of

only mobile hosts without constructing a fixed wired net-

work [9-12].

In the following section, we briefly explain the outline of

the tinkered tree. In Section 3, we explain the heuristic pro-

posed in this paper, and in Section 4, we prove the useful-

160

Received 20 March 2022, Revised 13 May 2022, Accepted 20 May 2022
*Corresponding Author Byungyeon Hwang (E-mail: byhwang@catholic.ac.kr, Tel: +82-2-2164-4363)
School of Computer Science and Information Engineering, The Catholic University of Korea, 43 Bucheon 14662, Korea

https://doi.org/10.56977/jicce.2022.20.3.160 print ISSN: 2234-8255 online ISSN: 2234-8883

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-
nc/3.0/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

Copyright ⓒ The Korea Institute of Information and Communication Engineering

https://orcid.org/0000-0001-5444-7463

Optimal Terminal Interconnection Reconstruction along with Terminal Transition in Randomly Divided Planes
ness of the proposed algorithm through experiments. In

Section 5, we present the conclusions of this paper.

II. TINKERED TREE

Suppose that an interconnection expansion occurs between

planes and that the divided plane has a set of terminals con-

nected by MST. By applying the MST algorithm to all termi-

nals on a plane, all planes can be connected using minimum

lengths. However, this process requires a considerable amount

of time. A tinkered tree is an optimal tree faster than the

MST algorithm and has a similar shape to the MST in this

situation. The tinkered tree uses the portal concept to build

an optimal tree similar to MST without creating an MST for

all terminals. We use a portal to find the closest pair to con-

nect the partition to an adjacent partition. After calculating

the distance between all partitions, they were connected

using the distance.

Figure 1 shows the process of tinkered tree heuristic with

three partitions. By comparing the distance of closet pairs

and creating a tinkered tree that connects the three partitions,

the interconnection is effectively constructed, maintaining

existing terminal subsets.

In this section, the tinkered tree is applied to a situation

involving the interconnection of static terminal sets. This

paper further expands the concept of an existing tinkered

tree in response to a situation in which partitions are con-

nected, and the terminals in the partitions are changed.

III. HEURISTIC OF THIS PROBLEM

A. Improvement of Tinkered Tree

When terminals change frequently, it takes considerable

time to reconstruct a new interconnection for all terminals

whenever a change occurs. Therefore, to quickly respond to

changes in terminals, it is necessary to rebuild the intercon-

nection by considering only the terminals related to the

change while maintaining the current interconnection status

as much as possible. To achieve this, the current intercon-

nection information must be stored.

1) Information on Adjacent Terminals

Each terminal in the partition is connected to one or more

other terminals. When there is a change in the terminal in the

plane, if we want to consider only the changed terminal, we

need information on the terminals connected with this changed

terminal. When terminals are inserted or deleted, this infor-

mation makes quick operation possible because only the con-

nection status of the terminals related to the changed

terminal is updated. Figure 2 shows a class diagram of the

added terminal information.

2) Information on tinkered tree

The critical information in the interconnected tinkered tree

is the terminal responsible for connecting adjacent partitions.

In this paper, we refer to this terminal as a tinkered terminal.

Each partition stores the information of the Tinkered termi-

nal, the terminals paired with the Tinkered terminal, and the

portal used for that connection. If the tinkered terminal is

changed in the insertion and deletion operations, we use this

information to replace the tinkered terminal to make it close

to the MST. In this paper, this information is called Tinke-

redInfo. Fig. 3 shows the class diagram of TinkeredInfo.

Fig. 1. Tinkered Tree Heuristic.

Fig. 2. Class Diagram of Terminal.
161 http://jicce.org

J. lnf. Commun. Converg. Eng. 20(3): 160-165, Sep. 2022
B. Operation Algorithm

1) Insertion Operation

When there is an interconnected tinkered tree, and a new

terminal is inserted, the algorithm in this paper works

according to the logic shown in Fig. 4.

When a new terminal is inserted, the distance between the

tinkered terminal and portal with the distance between the

inserted terminal and portal is compared. If the inserted ter-

minal is closer to the portal than the tinkered terminal, the

tinkered terminal is replaced by the inserted terminal. This is

necessary to keep the tree as close as possible to the MST,

even if the operation continues. In this manner, we compared

the tinkered terminals with all adjacent partitions. The

inserted terminal is then connected to the nearest terminal in

the partition so that it can be connected to all terminals.

When a terminal is inserted, the change occurs only in the

partition whose terminal is inserted following this logic.

Therefore, this can save considerable time compared with

reconstructing the MST for the entire terminal.

2) Deletion Operation

When there is an interconnected tinkered tree, and in the

case of an existing terminal being deleted, the algorithm in

this paper works with the logic shown in Fig. 5.

The connection to the adjacent partition is lost if one ter-

minal is deleted from the tinkered tree and the terminal is

tinkered. Therefore, it is necessary to replace the tinkered

terminal with another terminal when it is deleted. At this

time, the terminal to be replaced is the second terminal, a

nearby portal used for the connection. After updating the tin-

kered terminal, the connection between the deleted and con-

nected terminals proceeds. As shown in Fig. 6, if the

terminal is at the end of the connection, the connection is

maintained even though the terminal is deleted.

Fig. 3. Class Diagram of TinkeredInfo.

Fig. 4. Insertion Operation Algorithm.

Fig. 5. Deletion Operation Algorithm.

Fig. 6. Deletion of End Terminal.
https://doi.org/10.56977/jicce.2022.20.3.160 162

Optimal Terminal Interconnection Reconstruction along with Terminal Transition in Randomly Divided Planes
However, as shown in Fig. 7, if the terminal is in the mid-

dle of the connection, the tinkered tree is disconnected if that

terminal is deleted. Therefore, when the middle terminal is

deleted, it is necessary to build an MST for the terminals

connected to the deleted terminal to maintain the connection.

When an existing terminal is deleted, the change occurs

only in the partition whose terminal is deleted following this

logic. Following this logic, we can save considerable time

constructing an MST for the entire terminal after changing.

IV. EXPERIMENTS

A. Benchmark Model

We require a benchmark model to evaluate the perfor-

mance of the proposed heuristic. For cases of interconnec-

tion where the number of components to be interconnected is

fixed, and the cost of the length should be minimized, it is

natural to apply an MST algorithm to obtain the optimal

solution. Among the algorithms for interconnection prob-

lems, the Prim algorithm for MSTs is the most suitable

benchmark because it is directly applicable to our proposed

problem. Therefore, in this paper, we select the Prime algo-

rithm for our benchmark model and compare our heuristic

with the benchmark by constructing the MST whenever the

terminals change. The comparison figures are the percentage

of runtime and length, as shown in Eqs. (1) and (2).

(1)

(2)

B. Create Instance

We created an instance that is a set of operations required

in this paper. The set of operations was randomly selected

from the three operations: insertion, deletion, and movement.

Each operation has the following constraints.

Constraint 1. The operation involves the insertion of a new

terminal, not an existing one. This implies that an existing

terminal cannot be inserted.

Constraint 2. The deletion operation targets existing termi-

nals. This is because a terminal that does not exist cannot be

removed.

Constraint 3. Movement operations target existing termi-

nals. Terminals that do not exist cannot be moved.

C. Environment for Experiments

The experiment environment was as follows: Windows 11

Pro 64-bit OS, 8.00 GB RAM, and CPU Intel(R) Core (TM)

i-51135G7 2.40 GHz. The algorithms designed herein were

implemented using Java and the Eclipse IDE.

The difference in the heuristic performance is related to

the number of terminals and operations. Therefore, we needed

to find the optimal values of these variables to be applied in

the final experiment. In the experiment, for each variable,

the results are the ratio of the time and length compared to

the benchmark model. We then select the optimal values

among them.

D. Choosing Optimal Variable

1) Terminal Experiment

To determine the optimal number of terminals for the final

experiment, we experimented while changing the number of

terminals from 1,000 to 100,000. The experimental results

were the averages of the time and length using 10 different

input files for each case. Fig. 8 shows a graph of time and

length according to the number of terminals of the heuristic

proposed in this paper. Each value is compared with the val-

ues presented in Equations 1 and 2 of Section IV.

As shown in Fig. 8, as the number of terminals increases,

the time and length decrease. From more than 50,000 termi-

nals, the gap of decrease in the time and length value is

smaller, and the value of the time and length gradually con-

verges. Therefore, we fixed the number of terminals at

Result of Time
Time of Tinkered Tree

Time of Benchmark model
---*100=

Result of Length
Length of Tinkered Tree

Length of Benchmark model
---*100=

Fig. 7. Deletion Middle Terminal.

Fig. 8. Results according to the number of Terminals.
163 http://jicce.org

J. lnf. Commun. Converg. Eng. 20(3): 160-165, Sep. 2022
50,000 in the final experiment.

2) Operation Experiment

To determine the optimal number of operations for the

final experiment, we experimented while changing the num-

ber from 50 to 5,000. Similar to the experiment for deter-

mining the number of terminals, the experimental results

were the average of the time and length using 10 different

input files for each case. Figure 9 shows a graph of time and

length according to the number of operations of the heuristic

proposed in this paper. Each value is compared using the

equation in section IV.

As shown in Fig. 9, the time required decreased as the

number of operations increased. However, the length decreased

to 500 and then gradually increased. As the number of oper-

ations increases, the length increases because the shape of

the tinkered tree gradually deviates from that of the MST.

Therefore, we fixed the number of operations at 500 in the

final experiment.

E. Performance Comparison

The optimal values for the number of terminals and opera-

tions were determined in the previous experiment. In the

final experiment, we applied these optimal values and evalu-

ated the performance of the heuristic compared to that of the

benchmark model. The experiment used 50,000 terminals,

110 partitions, 50 portals, and 500 operations. The experi-

mental results are the averages of the time and length from

ten different input files. Each value is compared using the

equation in section IV. Figure 10 shows a bar graph of the

runtime comparing the heuristic model with the benchmark

model.

As shown in Fig. 10, the heuristic proposed in this paper

shows 99.986% better runtime performance than the bench-

mark model. Following Table is the average value runtime of

the heuristic and benchmark models.

Figure 11 shows a bar graph of the length used to compare

the heuristic with the benchmark model.

As shown in Fig. 11, when connecting all terminals, the

heuristic proposed in this paper uses a length of approxi-

mately 3.3% more than that of the benchmark model. The

following Table shows the average values of the used length

of the heuristic and benchmark models.

The heuristic proposed in this paper improved the runtime

by 99.986%, although it used a length of 3.3% more than

that of the benchmark model. This proves that the heuristic

proposed in this paper works effectively in terms of the run-

time.

V. CONCLUSIONS

Given the MSTs of the randomly divided partition on a

two-dimensional plane, we defined the tinkered tree, a heu-

ristic that quickly constructs the interconnection using the

given information without reconstructing the interconnection

for the entire terminal. In addition, we expanded the conceptFig. 10. Comparison of Runtime.

Fig. 9. Results according to the number of Operations.

Table 1. Standard runtime of Fig. 10

Benchmark Model Tinkered Tree

Runtime (sec) 8108.492 1.115

Fig. 11. Comparison of Length.

Table 2. Standard length of Fig. 11

Benchmark Model Tinkered Tree

Length 13426039.546 13861466.665
https://doi.org/10.56977/jicce.2022.20.3.160 164

Optimal Terminal Interconnection Reconstruction along with Terminal Transition in Randomly Divided Planes
of the tinkered tree in a way that responds to the situation

where terminals change in real-time on the interconnected

plane. By comparing the tinkered tree with the benchmark

model, we demonstrate that it can achieve more efficient

performance. Although the tinkered tree does not ensure the

minimum length, as in an MST algorithm, we can expect an

effect in situations where a quick interconnection for fluid or

flexibility networks is needed by constructing the intercon-

nections within a short time.

Our future research intends to propose a plan to expand

the problems in various fields, such as situations in which

terminals in a plane have a specific distribution and situa-

tions in which the divided plane itself changes so that they

can be applied to various fields.

ACKNOWLEDGMENTS

This work was supported by the Catholic University of

Korea Research Fund (2021).

REFERENCES

[1] K. Zhou and J. Chen, “Simulation DNA algorithm of set covering

problem,” Applied Mathematics & Information Sciences, vol. 8, no.

1, pp. 139-144, Jan. 2014. DOI: 10.12785/amis/080117.

[2] P. K. Tripathy, R. K. Dash, and C. R. Tripathy, “A genetic algorithm

based approach for topological optimization of interconnection

networks,” in Procedia Technology, Rourkela, India, vol. 6, pp. 196-

205, 2012. DOI: 10.1016/j.protcy.2012.10.024.

[3] J. Kim, J. Oh, M. Kim, Y. Kim, J. Lee, S. Han, and B. Hwang,

“Maximum node interconnection by a given sum of euclidean edge

lengths,” Journal of Information and Communication Convergence

Engineering, vol. 17, no. 4, pp. 246-254, 2019. DOI: 10.6109/

jicce.2019.17.4.246

[4] D. Hu, P. Dai, K. Zhou, and S. Ge, “Improved particle swarm

optimization for minimum spanning tree of length constraint

problem,” in 8th International Conference on Intelligent

Computation Technology and Automation, Nanchang, China, pp.

474-477, 2015. DOI: 10.1109/icicta.2015.124.

[5] G. Hong-mei, X. Chao, and Y. Ben-cheng, “Design and analysis of

minimum spanning tree in euclidean plane,” in International

Conference on Computational and Information Sciences, Shiyang,

China, pp. 976-979, 2013. DOI: 10.1109/iccis.2013.262.

[6] V. Geetha, S. Aithal, and K. C. Sekaran, “Effect of mobility over

performance of the ad hoc networks,” in International Symposium on

Ad Hoc and Ubiquitous Computing, Mangalore, India, pp. 138-141,

2006. DOI: 10.1109/isahuc.2006.4290661.

[7] P. Flocchini, T. M. Enriquez, L. Pagli, G. Prencipe, and N. Santoro,

“Distributed minimum spanning tree maintenance for transient node

failures,” IEEE Transactions on Computers, vol. 61, no. 3, pp. 408-

414, Nov. 2012. DOI: https://doi.org/10.1109/tc.2010.228.

[8] R. Ghoshal and S. Sundar, “Two approaches for the min-degree

constrained minimum spanning tree problem,” Applied Soft

Computing, vol. 111, 107715, Nov. 2021. DOI: 10.1016/j.asoc.

2021.107715.

[9] Perkins, “Ad hoc networking in the IETF,” in IEEE International

Workshop on Broadband Convergence Networks, Vancouver: BC,

Canada, pp. 1-35, 2006. DOI: 10.1109/bcn.2006.1662294.

[10] S. Ren, P. Yi, D. Hong, Y. Wu, and T. Zhu. “Distributed construction

of connected dominating sets optimized by minimum-weight

spanning tree in wireless ad-hoc sensor networks,” in IEEE 17th

International Conference on Computational Science and

Engineering, Chengdu, China, pp. 901-908, 2014. DOI: 10.1109/

cse.2014.183.

[11] J. J. Kponyo, Y. Kuang, E. Zhang, and K. Domenic, “VANET

cluster-on-demand minimum spanning tree (MST) prim clustering

algorithm,” in International Conference on Computational Problem-

Solving, Jiuzhai, China, pp. 101-104, 2013. DOI: 10.1109/iccps.

2013.6893585.

[12] X. Zhang and X. Zhang, “A binary artificial bee colony algorithm for

constructing spanning trees in vehicular ad hoc networks,” Ad Hoc

Networks, vol. 58, pp. 198-204, Apr. 2017. DOI: 10.1016/j.adhoc.

2016.07.001.

Jiwon Youn
is an undergraduate student majoring in Computer Science and Information Engineering at the Catholic University of Korea

since 2018. Her research interests include databases, algorithms, and artificial intelligence.

Byungyeon Hwang
received his B.S. degree in Computer Engineering from Seoul National University, Korea in 1986, and M.S. and

PhD. degrees in Computer Science from Korea Advanced Institute of Science and Technology (KAIST) in 1989 and

1994, respectively. He is a professor in the School of Computer Science and Information Engineering at the

Catholic University of Korea. His research interests include database, social network analysis, and approximation

algorithms.
165 http://jicce.org

