• Title/Summary/Keyword: Real-time Search Terms

Search Result 60, Processing Time 0.028 seconds

Adaptive Matching Scan Algorithm Based on Gradient Magnitude and Sub-blocks in Fast Motion Estimation of Full Search (전영역 탐색의 고속 움직임 예측에서 기울기 크기와 부 블록을 이용한 적응 매칭 스캔 알고리즘)

  • 김종남;최태선
    • Proceedings of the IEEK Conference
    • /
    • 1999.11a
    • /
    • pp.1097-1100
    • /
    • 1999
  • Due to the significant computation of full search in motion estimation, extensive research in fast motion estimation algorithms has been carried out. However, most of the algorithms have the degradation in predicted images compared with the full search algorithm. To reduce an amount of significant computation while keeping the same prediction quality of the full search, we propose a fast block-matching algorithm based on gradient magnitude of reference block without any degradation of predicted image. By using Taylor series expansion, we show that the block matching errors between reference block and candidate block are proportional to the gradient magnitude of matching block. With the derived result, we propose fast full search algorithm with adaptively determined scan direction in the block matching. Experimentally, our proposed algorithm is very efficient in terms of computational speedup and has the smallest computation among all the conventional full search algorithms. Therefore, our algorithm is useful in VLSI implementation of video encoder requiring real-time application.

  • PDF

Sequencing to keep a constant rate of part usage in car assembly lines (자동차 조립라인에서 부품사용의 일정율 유지를 위한 투입순서 결정)

  • 현철주
    • Journal of the Korea Safety Management & Science
    • /
    • v.4 no.3
    • /
    • pp.95-105
    • /
    • 2002
  • This paper considers the sequencing of products in car assembly lines under Just-In-Time systems. Under Just-In-Time systems, the most important goal for the sequencing problem is to keep a constant rate of usage every part used by the systems. In this paper, tabu search technique for this problem is proposed. Tabu search is a heuristic method which can provide a near optimal solution in real time. The performance of proposed technique is compared with existing heuristic methods in terms of solution quality and computation time. Various examples are presented and experimental results are reported to demonstrate the efficiency of the technique.

Search Algorithm for Efficient Optimal Path based on Time-weighted (시간 가중치 기반 효율적인 최적 경로 탐색 기법 연구)

  • Her, Yu-sung;Kim, Tae-woo;Ahn, Yonghak
    • Journal of the Korea Convergence Society
    • /
    • v.11 no.2
    • /
    • pp.1-8
    • /
    • 2020
  • In this paper, we propose an optimal path search algorithm between each node and midpoint that applies the time weighting. Services for using a location of mid point usually provide a mid point location-based on the location of users. There is a problem that is not efficient in terms of time because a location-based search method is only considered for location. To solve the problem of the existing location-based search method, the proposed algorithm sets the weights between each node and midpoint by reflecting user's location information and required time. Then, by utilizing that, it is possible to search for an optimum path. In addition, to increase the efficiency of the search, it ensures high accuracy by setting weights adaptively to the information given. Experimental results show that the proposed algorithm is able to find the optimal path to the midpoint compared with the existing method.

An Adaptive Block Matching Algorithm based on Temporal Correlations

  • Yoon, Hyo-Sun;Son, Nam-Rye;Lee, Guee-Sang;Kim, Soo-Hyung
    • Proceedings of the IEEK Conference
    • /
    • 2002.07a
    • /
    • pp.188-191
    • /
    • 2002
  • To reduce the bit-rate of video sequences by removing temporal redundancy, motion estimation techniques have been developed. However, the high computational complexity of the problem makes such techniques very difficult to be applied to high-resolution applications in a real time environment. For this reason, low computational complexity motion estimation algorithms are viable solutions. If a priori knowledge about the motion of the current block is available before the motion estimation, a better starting point for the search of n optimal motion vector on be selected and also the computational complexity will be reduced. In this paper, we present an adaptive block matching algorithm based on temporal correlations of consecutive image frames that defines the search pattern and the location of initial starting point adaptively to reduce computational complexity. Experiments show that, comparing with DS(Diamond Search) algorithm, the proposed algorithm is about 0.1∼0.5(㏈) better than DS in terms of PSNR and improves as much as 50% in terms of the average number of search points per motion estimation.

  • PDF

A Study on Predictive Traffic Information Using Cloud Route Search (클라우드 경로탐색을 이용한 미래 교통정보 예측 방법)

  • Jun Hyun, Kim;Kee Wook, Kwon
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.33 no.4
    • /
    • pp.287-296
    • /
    • 2015
  • Recent navigation systems provide quick guide services, based on processing real-time traffic information and past traffic information by applying predictable pattern for traffic information. However, the current pattern for traffic information predicts traffic information by processing past information that it presents an inaccuracy problem in particular circumstances(accidents and weather). So, this study presented a more precise predictive traffic information system than historical traffic data first by analyzing route search data which the drivers ask in real time for the quickest way then by grasping traffic congestion levels of the route in which future drivers are supposed to locate. First results of this study, the congested route from Yang Jae to Mapo, the analysis result shows that the accuracy of the weighted value of speed of existing commonly congested road registered an error rate of 3km/h to 18km/h, however, after applying the real predictive traffic information of this study the error rate registered only 1km/h to 5km/h. Second, in terms of quality of route as compared to the existing route which allowed for an earlier arrival to the destination up to a maximum of 9 minutes and an average of up to 3 minutes that the reliability of predictable results has been secured. Third, new method allows for the prediction of congested levels and deduces results of route searches that avoid possibly congested routes and to reflect accurate real-time data in comparison with existing route searches. Therefore, this study enabled not only the predictable gathering of information regarding traffic density through route searches, but it also made real-time quick route searches based on this mechanism that convinced that this new method will contribute to diffusing future traffic flow.

Efficient Implementation of Candidate Region Extractor for Pedestrian Detection System with Stereo Camera based on GP-GPU (스테레오 영상 보행자 인식 시스템의 후보 영역 검출을 위한 GP-GPU 기반의 효율적 구현)

  • Jeong, Geun-Yong;Jeong, Jun-Hee;Lee, Hee-Chul;Jeon, Gwang-Gil;Cho, Joong-Hwee
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.8 no.2
    • /
    • pp.121-128
    • /
    • 2013
  • There have been various research efforts for pedestrian recognition in embedded imaging systems. However, many suffer from their heavy computational complexities. SVM classification method has been widely used for pedestrian recognition. The reduction of candidate region is crucial for low-complexity scheme. In this paper, We propose a real time HOG based pedestrian detection system on GPU which images are captured by a pair of cameras. To speed up humans on road detection, the proposed method reduces a number of detection windows with disparity-search and near-search algorithm and uses the GPU and the NVIDIA CUDA framework. This method can be achieved speedups of 20% or more compared to the recent GPU implementations. The effectiveness of our algorithm is demonstrated in terms of the processing time and the detection performance.

PubMine: An Ontology-Based Text Mining System for Deducing Relationships among Biological Entities

  • Kim, Tae-Kyung;Oh, Jeong-Su;Ko, Gun-Hwan;Cho, Wan-Sup;Hou, Bo-Kyeng;Lee, Sang-Hyuk
    • Interdisciplinary Bio Central
    • /
    • v.3 no.2
    • /
    • pp.7.1-7.6
    • /
    • 2011
  • Background: Published manuscripts are the main source of biological knowledge. Since the manual examination is almost impossible due to the huge volume of literature data (approximately 19 million abstracts in PubMed), intelligent text mining systems are of great utility for knowledge discovery. However, most of current text mining tools have limited applicability because of i) providing abstract-based search rather than sentence-based search, ii) improper use or lack of ontology terms, iii) the design to be used for specific subjects, or iv) slow response time that hampers web services and real time applications. Results: We introduce an advanced text mining system called PubMine that supports intelligent knowledge discovery based on diverse bio-ontologies. PubMine improves query accuracy and flexibility with advanced search capabilities of fuzzy search, wildcard search, proximity search, range search, and the Boolean combinations. Furthermore, PubMine allows users to extract multi-dimensional relationships between genes, diseases, and chemical compounds by using OLAP (On-Line Analytical Processing) techniques. The HUGO gene symbols and the MeSH ontology for diseases, chemical compounds, and anatomy have been included in the current version of PubMine, which is freely available at http://pubmine.kobic.re.kr. Conclusions: PubMine is a unique bio-text mining system that provides flexible searches and analysis of biological entity relationships. We believe that PubMine would serve as a key bioinformatics utility due to its rapid response to enable web services for community and to the flexibility to accommodate general ontology.

A Parallel Adaptive Evolutionary Algorithm for Thermal Unit Commitment (병렬 적응 진화알고리즘을 이용한 발전기 기동정지계획에 관한 연구)

  • Kim, Hyung-Su;Cho, Duck-Hwan;Mun, Kyeong-Jun;Lee, Hwa-Seok;Park, June-Ho;Hwang, Gi-Hyun
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.55 no.9
    • /
    • pp.365-375
    • /
    • 2006
  • This paper is presented by the application of parallel adaptive evolutionary algorithm(PAEA) to search an optimal solution of a thermal unit commitment problem. The adaptive evolutionary algorithm(AEA) takes the merits of both a genetic algorithm(GA) and an evolution strategy(ES) in an adaptive manner to use the global search capability of GA and the local search capability of ES. To reduce the execution time of AEA, the developed algorithm is implemented on an parallel computer which is composed of 16 processors. To handle the constraints efficiently and to apply to Parallel adaptive evolutionary algorithm(PAEA), the states of thermal unit are represented by means of real-valued strings that display continuous terms of on/off state of generating units and are involved in their minimum up and down time constraints. And the violation of other constraints are handled by repairing operator. The procedure is applied to the $10{\sim}100$ thermal unit systems, and the results show capabilities of the PAEA.

An Adaptive Block Matching Algorithm Based on Temporal Correlations (시간적 상관성을 이용한 적응적 블록 정합 알고리즘)

  • Yoon, Hyo-Sun;Lee, Guee-Sang
    • The KIPS Transactions:PartB
    • /
    • v.9B no.2
    • /
    • pp.199-204
    • /
    • 2002
  • Since motion estimation and motion compensation methods remove the redundant data to employ the temporal redundancy in images, it plays an important role in digital video compression. Because of its high computational complexity, however, it is difficult to apply to high-resolution applications in real time environments. If we have information about the motion of an image block before the motion estimation, the location of a better starting point for the search of an exact motion vector can be determined to expedite the searching process. In this paper, we present an adaptive motion estimation approach bated on temporal correlations of consecutive image frames that defines the search pattern and determines the location of the initial search point adaptively. Through experiments, compared with DS(Diamond Search) algorithm, the proposed algorithm is about 0.1∼0.5(dB) better than DS in terms of PSNR(Peak Signal to Noise Ratio) and improves as high as 50% compared with DS in terms of average number of search point per motion vector estimation.

A Popularity-driven Cache Management and its Performance Evaluation in Meta-search Engines (메타 검색 엔진을 위한 인기도 기반 캐쉬 관리 및 성능 평가)

  • Hong, Jin-Seon;Lee, Sang-Ho
    • Journal of KIISE:Databases
    • /
    • v.29 no.2
    • /
    • pp.148-157
    • /
    • 2002
  • Caching in meta-search engines can improve the response time of users' request. We describe the cache scheme in our meta-search engine in terms of its architecture and operational flow. In particular, we propose a popularity-driven cache algorithm that utilizes popularities of queries to determine cached data to be purged. The popularity is a value that represents the normalized occurrence frequency of user queries. This paper presents how to collect popular queries and how to calculate query popularities. An empirical performance evaluation of the popularity-driven caching with the traditional schemes (i.e., least recently used (LRU) and least frequently used (LFU)) has been carried out on a collection of real data. In almost all cases, the proposed replacement policy outperforms LRU and LFU.