• Title/Summary/Keyword: Real-time Kinematics

Search Result 117, Processing Time 0.025 seconds

Motion Generation of Human Body using Real-time Marker-Free Motion Capture (실시간 마커프리 모션캡쳐를 이용한 인체 동작 생성)

  • 이란희;김성은;박창준;이인호
    • Proceedings of the Korea Multimedia Society Conference
    • /
    • 2003.05b
    • /
    • pp.559-562
    • /
    • 2003
  • 본 논문에서는 실시간 마커프리 모션캡쳐 시스템으로 캡쳐된 동작자의 Root와 End-effector 위치 데이터를 이용하여 가상 캐릭터의 동작을 생성하는 방법에 0해 기술한다. 동작자의 신체중심이 되는 Root와 머리, 손, 발과 같은 End-effector의 위치 데이터는 동작자의 전방 좌, 우에 위치한 동기화된 2대의 컬러 CCD 카메라를 이용하여 3차원 위치를 캡쳐한다. 영상으로부터 추출되지 않은 중간관절의 위치를 생성하기 위해 Root와 End-effector의 3차원 위치값들을 IK( Inverse Kinematics) 알고리듬에 적용하고, 생성된 위치값들에 다양한 신체의 제약조건을 고려하여 정밀하게 계산한다. 이러한 과정을 거치므로 서 20개 관절의 위치값을 생성할 수 있으며, 생성된 관절의 위치값을 가상 캐릭터에 적용하므로 서 캐릭터의 움직임을 실시간으로 생성할 수 있다.

  • PDF

Implementation of a Virtual Environment for the HLW Disposal Process Analyses (고준위폐기물 처분공정 개념분석을 위한 가상환경 구축)

  • Lee J.Y.;Cho D.K.;Choi H.J.;Kim S.G.;Choi J.W.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1636-1639
    • /
    • 2005
  • The process equipment and remote handling for the deep geological disposal of high-level radioactive waste(HLW) should be checked prior to the operation in view of reliability and operability. In this study, the concept of virtual environment workcell is implemented to analyze and define the feasible disposal process instead of real mock-up, which is very expensive and time consuming. To do this, the parts of process equipment for the disposal and maintenance will be modeled in 3-D graphics, assembled, and kinematics will be assigned. Also, the virtual workcell for the encapsulation and disposal process of spent fuel will be implemented in the graphical environment, which is the same as the real environment. This virtual workcell will have the several functions for verification such as analyses for the equipment's work space, the collision detection, the path planning and graphic simulation of the processes etc. This graphic virtual workcell of the HLW disposal process can be effectively used in designing of the processes for the hot cell equipment and enhance the reliability of the spent fuel management.

  • PDF

The Position Compensation for a Mobile Robot Using DGPS-type Precise Position Service System (DGPS형 정밀위치시스템을 이용한 이동 로봇 위치보정)

  • Kim, Yoon-Gu;Lee, Ki-Dong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.12 no.9
    • /
    • pp.883-890
    • /
    • 2006
  • Nowadays, CPS is used widely, especially in cases which need more precise position information, such as car navigation systems and even in the mobile robot for position measuring in the outdoor environment. RTK (Real-Time Kinematics) and DGPS (Differential Global Positioning System) have more precise accuracy than the general-purposed GPS. However can't easily use them because of high prices and large size of equipments. In order fur the mobile robot to obtain precise position information it is important that CPS receiver has portability and low price. In this study, we introduce a new GPS data acquisition system that offers the precise position data using the DGPS mechanism and satisfying low cost and portability. In addition to this, we propose an improved data compensation algorithm that offers more accurate position information to the outdoor mobile robot by compensating the error rate of CPS data measured from the three points with geometrical rotation and distance formula. Proposed method is verified by comparing with the precise real position data obtained by RTK. Proposed method has more than 70% performance enhancement.

Tracking Control of 6-DOF Shaking Table with Bell Crank Structure (벨 크랭크 구조를 가지는 6 자유도 진동 시험기의 추적 제어)

  • Jeon, Duek-Jae;Park, Sung-Ho;Park, Young-Jin;Park, Youn-Sik;Kim, Hyoung-Eui
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11a
    • /
    • pp.306-309
    • /
    • 2005
  • This parer describes the tracking control simulation of 6-DOF shaking table with a bell crank structure, which converts the direction of reciprocating movements. For the Joint coordinate-based control which uses lengths of each actuator, the trajectory conversion process inverse kinematics is performed. Applying the Newton-Euler approach, the dynamic equation of the shaking table is derived. To cope with nonlinear problems, time-delay control(TDC) is considered, which has been noted for its exceptional robustness to parameter uncertainties and disturbance, in addition to steady-state accuracy and computational efficiency. If the nominal model is equal to the real system, joint coordinate-based control can be very efficient. However, manufacturing tolerances installation errors and link offsets contaminate the nominal values of the kinematic parameters used in the kinematic model of the shaking table. To compensate differences between the nominal model and the real system. the joint coordinate-based control using acceleration feedback in the Cartesian coordinate space is proposed.

  • PDF

Reliable Autonomous Reconnaissance System for a Tracked Robot in Multi-floor Indoor Environments with Stairs (다층 실내 환경에서 계단 극복이 가능한 궤도형 로봇의 신뢰성 있는 자율 주행 정찰 시스템)

  • Juhyeong Roh;Boseong Kim;Dokyeong Kim;Jihyeok Kim;D. Hyunchul Shim
    • The Journal of Korea Robotics Society
    • /
    • v.19 no.2
    • /
    • pp.149-158
    • /
    • 2024
  • This paper presents a robust autonomous navigation and reconnaissance system for tracked robots, designed to handle complex multi-floor indoor environments with stairs. We introduce a localization algorithm that adjusts scan matching parameters to robustly estimate positions and create maps in environments with scarce features, such as narrow rooms and staircases. Our system also features a path planning algorithm that calculates distance costs from surrounding obstacles, integrated with a specialized PID controller tuned to the robot's differential kinematics for collision-free navigation in confined spaces. The perception module leverages multi-image fusion and camera-LiDAR fusion to accurately detect and map the 3D positions of objects around the robot in real time. Through practical tests in real settings, we have verified that our system performs reliably. Based on this reliability, we expect that our research team's autonomous reconnaissance system will be practically utilized in actual disaster situations and environments that are difficult for humans to access, thereby making a significant contribution.

A Study on the Development of iGPS 3D Probe for RDS for the Precision Measurement of TCP (RDS(Robotic Drilling System)용 TCP 정밀계측을 위한 iGPS 3D Probe 개발에 관한 연구)

  • Kim, Tae-Hwa;Moon, Sung-Ho;Kang, Seong-Ho;Kwon, Soon-Jae
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.11 no.6
    • /
    • pp.130-138
    • /
    • 2012
  • There are increasing demands from the industry for intelligent robot-calibration solutions, which can be tightly integrated to the manufacturing process. A proposed solution can simplify conventional robot-calibration and teaching methods without tedious procedures and lengthy training time. iGPS(Indoor GPS) system is a laser based real-time dynamic tracking/measurement system. The key element is acquiring and reporting three-dimensional(3D) information, which can be accomplished as an integrated system or as manual contact based measurements by a user. A 3D probe is introduced as the user holds the probe in his hand and moves the probe tip over the object. The X, Y, and Z coordinates of the probe tip are measured in real-time with high accuracy. In this paper, a new approach of robot-calibration and teaching system is introduced by implementing a 3D measurement system for measuring and tracking an object with motions in up to six degrees of freedom. The general concept and kinematics of the metrology system as well as the derivations of an error budget for the general device are described. Several experimental results of geometry and its related error identification for an easy compensation / teaching method on an industrial robot will also be included.

On-line Motion Control of Avatar Using Hand Gesture Recognition (손 제스터 인식을 이용한 실시간 아바타 자세 제어)

  • Kim, Jong-Sung;Kim, Jung-Bae;Song, Kyung-Joon;Min, Byung-Eui;Bien, Zeung-Nam
    • Journal of the Korean Institute of Telematics and Electronics C
    • /
    • v.36C no.6
    • /
    • pp.52-62
    • /
    • 1999
  • This paper presents a system which recognizes dynamic hand gestures on-line for controlling motion of numan avatar in virtual environment(VF). A dynamic hand gesture is a method of communication between a computer and a human being who uses gestures, especially both hands and fingers. A human avatar consists of 32 degree of freedom(DOF) for natural motion in VE and navigates by 8 pre-defined dynamic hand gestures. Inverse kinematics and dynamic kinematics are applied for real-time motion control of human avatar. In this paper, we apply a fuzzy min-max neural network and feature analysis method using fuzzy logic for on-line dynamic hand gesture recognition.

  • PDF

Vision-Based Dynamic Motion Measurement of a Floating Structure Using Multiple Targets under Wave Loadings (다중 표적을 이용한 부유식 구조물의 영상 기반 동적 응답 계측)

  • Yi, Jin-Hak;Kim, Jin-Ha;Jeong, Weon-Mu;Chae, Jang-Won
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.1A
    • /
    • pp.19-30
    • /
    • 2012
  • Recently, vision-based dynamic deflection measurement techniques have significant interests and are getting more popular owing to development of the high-quality and low-price camcorder and also image processing algorithm. However, there are still several research issues to be improved including the self-vibration of vision device, i.e. camcorder, and the image processing algorithm in device aspect, and also the application area should be extended to measure three dimensional movement of floating structures in application aspect. In this study, vision-based dynamic motion measurement technique using multiple targets is proposed to measure three dimensional dynamic motion of floating structures. And also a new scheme to select threshold value to discriminate the background from the raw image containing targets. The proposed method is applied to measure the dynamic motion of large concrete floating quay in open sea area under several wave conditions, and the results are compared with the measurement results from conventional RTK-GPS(Real Time Kinematics-Global Positioning System) and MRU(Motion Reference Unit).

Prediction on the Performance Variation by the Rover Position of the One-way Network RTK (사용자 위치별 단방향 Network RTK 측위 성능 예측)

  • Park, Byungwoon;Wang, Namkyong;Kee, Changdon;Park, Heungwon;Seo, Seungwoo
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2014.06a
    • /
    • pp.107-108
    • /
    • 2014
  • As the demand for precise navigation has increased, more focus is put on the precise positioning, RTK(Real Time Kinematics) which has been used in the surveying field. The Position of Single Reference Station RTK or two-way network RTK such as VRS (Virtual Reference Station) is accurate enough to be used as a main technology in land surveying, however its service area and number of users is limited and the users are assumed static. This characteristic is not suitable to the navigation, whose service target is infinite number of users moving over a wide area. One-way network RTK has recently been suggested as a solution for the precise navigation technique for the mobile user. This paper shows the performance prediction of the one-way network RTK such as MAC(Master-Auxiliary Concept), or FKP (Flachenkorrekturparameter). To show the performance variation by the rover position, we constructed a simulation data of users on the grid with 0.1 degree spacing between 36.5 and 37 degree latitude and between 127 and 127.5 degree longitude.

  • PDF

Deep Learning-Based Motion Reconstruction Using Tracker Sensors (트래커를 활용한 딥러닝 기반 실시간 전신 동작 복원 )

  • Hyunseok Kim;Kyungwon Kang;Gangrae Park;Taesoo Kwon
    • Journal of the Korea Computer Graphics Society
    • /
    • v.29 no.5
    • /
    • pp.11-20
    • /
    • 2023
  • In this paper, we propose a novel deep learning-based motion reconstruction approach that facilitates the generation of full-body motions, including finger motions, while also enabling the online adjustment of motion generation delays. The proposed method combines the Vive Tracker with a deep learning method to achieve more accurate motion reconstruction while effectively mitigating foot skating issues through the use of an Inverse Kinematics (IK) solver. The proposed method utilizes a trained AutoEncoder to reconstruct character body motions using tracker data in real-time while offering the flexibility to adjust motion generation delays as needed. To generate hand motions suitable for the reconstructed body motion, we employ a Fully Connected Network (FCN). By combining the reconstructed body motion from the AutoEncoder with the hand motions generated by the FCN, we can generate full-body motions of characters that include hand movements. In order to alleviate foot skating issues in motions generated by deep learning-based methods, we use an IK solver. By setting the trackers located near the character's feet as end-effectors for the IK solver, our method precisely controls and corrects the character's foot movements, thereby enhancing the overall accuracy of the generated motions. Through experiments, we validate the accuracy of motion generation in the proposed deep learning-based motion reconstruction scheme, as well as the ability to adjust latency based on user input. Additionally, we assess the correction performance by comparing motions with the IK solver applied to those without it, focusing particularly on how it addresses the foot skating issue in the generated full-body motions.