• 제목/요약/키워드: Real-time Database

Search Result 951, Processing Time 0.026 seconds

Development for Prediction Model of Disaster Risk through Try and Error Method : Storm Surge (시행 착오법을 활용한 재난 위험도 예측모델 개발 : 폭풍해일)

  • Kim, Dong Hyun;Yoo, HyungJu;Jeong, SeokIl;Lee, Seung Oh
    • Journal of Korean Society of Disaster and Security
    • /
    • v.11 no.2
    • /
    • pp.37-43
    • /
    • 2018
  • The storm surge is caused by an typhoons and it is not easy to predict the location, strength, route of the storm. Therefore, research using a scenario for storms occurrence has been conducted. In Korea, hazard maps for various scenarios were produced using the storm surge numerical simulation. Such a method has a disadvantage in that it is difficult to predict when other scenario occurs, and it is difficult to cope with in real time because the simulation time is long. In order to compensate for this, we developed a method to predict the storm surge damage by using research database. The risk grade prediction for the storm surge was performed predominantly in the study area of the East coast. In order to estimate the equation, COMSOL developed by COMSOL AB Corporation was utilized. Using some assumptions and limitations, the form of the basic equation was derived. the constants and coefficients in the equation were estimated by the trial and error method. Compared with the results, the spatial distribution of risk grade was similar except for the upper part of the map. In the case of the upper part of the map, it was shown that the resistance coefficient, k was calculated due to absence of elevation data. The SIND model is a method for real-time disaster prediction model and it is expected that it will be able to respond quickly to disasters caused by abnormal weather.

Changes of Time-Distance Accessibility by Year and Day in the Integrated Seoul Metropolitan Public Transportation Network (서울 대도시권 통합 대중 교통망에서 연도별 및 요일별 시간거리 접근도 변화)

  • Park, Jong Soo;Lee, Keumsook
    • Journal of the Economic Geographical Society of Korea
    • /
    • v.21 no.4
    • /
    • pp.335-349
    • /
    • 2018
  • This study analyzes the effect of the changes in traffic environments such as transportation speeds on the time-distance accessibility for the public transportation passengers. To do this, we use passenger transaction databases of the Seoul metropolitan public transportation system: one week for each of the three years (2011, 2013, and 2015). These big data contain the information about time and space on the traffic trajectories of every passenger. In this study, the time-distances of links between subway stations and bus stops of the public transportation system at each time are calculated based on the actual travel time extracted from the traffic-card transaction database. The changes in the time-distance accessibility of the integrated transportation network from the experimental results can be summarized in two aspects. First, the accessibility tends to decline as the year goes by. This is because the transportation network becomes more complicated and then the average moving speed of the vehicles is lowered. Second, the accessibility tends to increase on the weekend in the analysis of accessibility changes by day. This tendency is because the bus speeds on bus routes on the weekend are faster than other days. In order to analyze the accessibility changes, we illustrate graphs of the vehicle speeds and the numbers of passengers by year and day.

Short-term Traffic States Prediction Using k-Nearest Neighbor Algorithm: Focused on Urban Expressway in Seoul (k-NN 알고리즘을 활용한 단기 교통상황 예측: 서울시 도시고속도로 사례)

  • KIM, Hyungjoo;PARK, Shin Hyoung;JANG, Kitae
    • Journal of Korean Society of Transportation
    • /
    • v.34 no.2
    • /
    • pp.158-167
    • /
    • 2016
  • This study evaluates potential sources of errors in k-NN(k-nearest neighbor) algorithm such as procedures, variables, and input data. Previous research has been thoroughly reviewed for understanding fundamentals of k-NN algorithm that has been widely used for short-term traffic states prediction. The framework of this algorithm commonly includes historical data smoothing, pattern database, similarity measure, k-value, and prediction horizon. The outcomes of this study suggests that: i) historical data smoothing is recommended to reduce random noise of measured traffic data; ii) the historical database should contain traffic state information on both normal and event conditions; and iii) trial and error method can improve the prediction accuracy by better searching for the optimum input time series and k-value. The study results also demonstrates that predicted error increases with the duration of prediction horizon and rapidly changing traffic states.

Vision-based Mobile Robot Localization and Mapping using fisheye Lens (어안렌즈를 이용한 비전 기반의 이동 로봇 위치 추정 및 매핑)

  • Lee Jong-Shill;Min Hong-Ki;Hong Seung-Hong
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.5 no.4
    • /
    • pp.256-262
    • /
    • 2004
  • A key component of an autonomous mobile robot is to localize itself and build a map of the environment simultaneously. In this paper, we propose a vision-based localization and mapping algorithm of mobile robot using fisheye lens. To acquire high-level features with scale invariance, a camera with fisheye lens facing toward to ceiling is attached to the robot. These features are used in mP building and localization. As a preprocessing, input image from fisheye lens is calibrated to remove radial distortion and then labeling and convex hull techniques are used to segment ceiling and wall region for the calibrated image. At the initial map building process, features we calculated for each segmented region and stored in map database. Features are continuously calculated for sequential input images and matched to the map. n some features are not matched, those features are added to the map. This map matching and updating process is continued until map building process is finished, Localization is used in map building process and searching the location of the robot on the map. The calculated features at the position of the robot are matched to the existing map to estimate the real position of the robot, and map building database is updated at the same time. By the proposed method, the elapsed time for map building is within 2 minutes for 50㎡ region, the positioning accuracy is ±13cm and the error about the positioning angle of the robot is ±3 degree for localization.

  • PDF

An Efficient ECU Analysis Technology through Non-Random CAN Fuzzing (Non-Random CAN Fuzzing을 통한 효율적인 ECU 분석 기술)

  • Kim, Hyunghoon;Jeong, Yeonseon;Choi, Wonsuk;Jo, Hyo Jin
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.30 no.6
    • /
    • pp.1115-1130
    • /
    • 2020
  • Modern vehicles are equipped with a number of ECUs(Electronic Control Units), and ECUs can control vehicles efficiently by communicating each other through CAN(Controller Area Network). However, CAN bus is known to be vulnerable to cyber attacks because of the lack of message authentication and message encryption, and access control. To find these security issues related to vehicle hacking, CAN Fuzzing methods, that analyze the vulnerabilities of ECUs, have been studied. In the existing CAN Fuzzing methods, fuzzing inputs are randomly generated without considering the structure of CAN messages transmitted by ECUs, which results in the non-negligible fuzzing time. In addition, the existing fuzzing solutions have limitations in how to monitor fuzzing results. To deal with the limitations of CAN Fuzzing, in this paper, we propose a Non-Random CAN Fuzzing, which consider the structure of CAN messages and systematically generates fuzzing input values that can cause malfunctions to ECUs. The proposed Non-Random CAN Fuzzing takes less time than the existing CAN Fuzzing solutions, so it can quickly find CAN messages related to malfunctions of ECUs that could be originated from SW implementation errors or CAN DBC(Database CAN) design errors. We evaluated the performance of Non-Random CAN Fuzzing by conducting an experiment in a real vehicle, and proved that the proposed method can find CAN messages related to malfunctions faster than the existing fuzzing solutions.

Remote Multi-control Smart Farm with Deep Learning Growth Diagnosis Function

  • Kim, Mi-jin;Kim, Ji-ho;Lee, Dong-hyeon;Han, Jung-hoon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.27 no.9
    • /
    • pp.49-57
    • /
    • 2022
  • Currently, the problem of food shortage is emerging in our society due to climate problems and an increase population in the world. As a solution to this problem, we propose a multi-remote control smart farm that combines artificial intelligence (AI) and information and communication technology (ICT) technologies. The proposed smart farm integrates ICT technology to remotely control and manage crops without restrictions in space and time, and to multi-control the growing environment of crops. In addition, using Arduino and deep-learning technology, a smart farm capable of multiple control through a smart-phone application (APP) was proposed, and Ai technology with various data securing and diagnosis functions while observing crop growth in real-time was included. Various sensors in the smart farm are controlled by using the Arduino, and the data values of the sensors are stored in the built database, so that the user can check the stored data with the APP. For multiple control for multiple crops, each LED, COOLING FAN, and WATER PUMP for two or more growing environments were applied so that the user could control it conveniently. And by implementing an APP that diagnoses the growth stage through the Tensor-Flow framework using deep-learning technology, we developed an application that helps users to easily diagnose the growth status of the current crop.

Analysis of the Bandwidth Consumed by Restoration Paths for Service Guarantee in the Protection Switching Scheme (보호 스위칭에 의한 경로 설정에 있어서 서비스 보장을 위한 복구 경로의 소비 대역 분석)

  • Lee, Hwang-Kyu;Hong, Sug-Won
    • The KIPS Transactions:PartC
    • /
    • v.10C no.2
    • /
    • pp.155-162
    • /
    • 2003
  • Fast restoration time and service guarantee are the important goals to achieve the network reliability. In the protection switching scheme, one way to guarantee service fro an application session if a network happens to fail is to establish the restoration path that amounts to the same bandwidth of the working path of the session at the same time. When we setup the restoration path, we can reduce the bandwidth consumption by the restoration path if the path can share the bandwidth required by the other paths. This paper explains the methods how to determine the shared bandwidth of the restoration path in the protection switching scheme, given the maximum bandwidth assigned to a link along the working path. We point out that such sharing algorithm can not reduce the bandwidth consumption by the restoration paths in some cases, which contradict the general conception. We explain why this can happen, and show the simulation results in real network topologies to prove our arguments. We explain the reason of the failure of the sharing effect by the simple sharing algorithm. Finally we propose the way of how we can overcome the failure of the sharing effect, using the complete sharing algorithm based on the link database and showing the results.

Constructing Spatial Data Warehouse for Forest Information Standardization Service of Municipal Governments (지자체 산림정보 표준화 서비스를 위한 공간 데이터웨어하우스 구축)

  • Jo, Yun-Won
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.12 no.2
    • /
    • pp.11-22
    • /
    • 2009
  • Recently the integration and development of ST(Spatial Technology) and forest geographic information have been used very efficiently for the forest administration. However, even though many application system related to forest information have been developed and improved, there are still paper based inventories management and hand work for data construction and upgrade. In this study the forest information warehouse, which is mapped and managed at work-site operations, was constructed based GIS technology so that the standardization and consistency of current data could be acquired in real time. In addition, these thematic maps were conducted on high resolution satellite images and managed in web based forest information data warehouse form and finally shared through Internet for the very first-line administration officials. This study shows that the forest information standardization service of municipal governments very first time in the Korea and provides the unified decision making support and enterprise formed forest database so that is expected to be the very successful sample to suggest the prototype of national forest spatial data infrastructure.

  • PDF

Implementation of a bio-inspired two-mode structural health monitoring system

  • Lin, Tzu-Kang;Yu, Li-Chen;Ku, Chang-Hung;Chang, Kuo-Chun;Kiremidjian, Anne
    • Smart Structures and Systems
    • /
    • v.8 no.1
    • /
    • pp.119-137
    • /
    • 2011
  • A bio-inspired two-mode structural health monitoring (SHM) system based on the Na$\ddot{i}$ve Bayes (NB) classification method is discussed in this paper. To implement the molecular biology based Deoxyribonucleic acid (DNA) array concept in structural health monitoring, which has been demonstrated to be superior in disease detection, two types of array expression data have been proposed for the development of the SHM algorithm. For the micro-vibration mode, a two-tier auto-regression with exogenous (AR-ARX) process is used to extract the expression array from the recorded structural time history while an ARX process is applied for the analysis of the earthquake mode. The health condition of the structure is then determined using the NB classification method. In addition, the union concept in probability is used to improve the accuracy of the system. To verify the performance and reliability of the SHM algorithm, a downscaled eight-storey steel building located at the shaking table of the National Center for Research on Earthquake Engineering (NCREE) was used as the benchmark structure. The structural response from different damage levels and locations was collected and incorporated in the database to aid the structural health monitoring process. Preliminary verification has demonstrated that the structure health condition can be precisely detected by the proposed algorithm. To implement the developed SHM system in a practical application, a SHM prototype consisting of the input sensing module, the transmission module, and the SHM platform was developed. The vibration data were first measured by the deployed sensor, and subsequently the SHM mode corresponding to the desired excitation is chosen automatically to quickly evaluate the health condition of the structure. Test results from the ambient vibration and shaking table test showed that the condition and location of the benchmark structure damage can be successfully detected by the proposed SHM prototype system, and the information is instantaneously transmitted to a remote server to facilitate real-time monitoring. Implementing the bio-inspired two-mode SHM practically has been successfully demonstrated.

The Detection of PVC based Rhythm Analysis and Beat Matching (리듬분석과 비트매칭을 통한 조기심실수축(PVC) 검출)

  • Jeon, Hong-Kyu;Cho, Ik-Sung;Kwon, Hyeog-Soong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.13 no.11
    • /
    • pp.2391-2398
    • /
    • 2009
  • Premature ventricular contractions are the most common of all arrhythmias and may cause more serious situation in some patients. Therefore, the detection of this arrhythmia becomes crucial in the early diagnosis and prevention of possible life threatening cardiac diseases. Most of the algorithms detecting PVC reported in literature is not always feasible due to the presence of noise and P wave making the detection difficult, and the process being time consuming and ineffective for real time analysis. To solve this problem, a new approach for the detection of PVC is presented based rhythm analysis and beat matching in this paper. For this purpose, the ECG signals are first processed by the usual preprocessing method and R wave was detected. The algorithm that decides beat type using the rhythm analysis of RR interval and beat matching of QRS width is developed. The performance of R wave and PVC detection is evaluated by using MIT-BIH arrhythmia database. The achieved scores indicate sensitivity of 99.74%, positive predictivity of 99.81% and sensitivity of 93.91%, positive predictivity of 96.48% accuracy respectively for R wave and PVC detection.