• Title/Summary/Keyword: Real-time Application

Search Result 3,456, Processing Time 0.028 seconds

Controlling Position of Virtual Reality Contents with Mouth-Wind and Acceleration Sensor

  • Kim, Jong-Hyun
    • Journal of the Korea Society of Computer and Information
    • /
    • v.24 no.4
    • /
    • pp.57-63
    • /
    • 2019
  • In this paper, we propose a new framework to control VR(Virtual reality) contents in real time using user's mouth-wind and acceleration sensor of mobile device. In VR, user interaction technology is important, but various user interface methods is still lacking. Most of the interaction technologies are hand touch screen touch or motion recognition. We propose a new interface technology that can interact with VR contents in real time using user's mouth-wind method with acceleration sensor. The direction of the mouth-wind is determined using the angle and position between the user and the mobile device, and the control position is adjusted using the acceleration sensor of the mobile device. Noise included in the size of the mouth wind is refined using a simple average filter. In order to demonstrate the superiority of the proposed technology, we show the result of interacting with contents in game and simulation in real time by applying control position and mouth-wind external force to the game.

A Study on Improving the Precision of Quantitative Prediction of Cold Forging Die Life Cycle Through Real Time Forging Load Measurement (실시간 성형하중 계측을 통한 냉간단조 금형수명 정량예측 정밀도 향상 연구)

  • Seo, Y.H.
    • Transactions of Materials Processing
    • /
    • v.30 no.4
    • /
    • pp.172-178
    • /
    • 2021
  • The cold forging process induces material deformation in an enclosed space, generating a very high forging load. Therefore, it is mainly designed as a multi-stage process, and fatigue failure occurs in forging die due to cyclic load. Studies have been conducted previously to quantitatively predict the fatigue limit of cold forging dies, however, there was a limit to field application due to the large error range and the need for expert intervention. To solve this problem, we conducted a study on the introduction of a real-time forging load measurement technology and an automated system for quantitative prediction of die life cycle. As a result, it was possible to reduce the error range of the quantitative prediction of die life cycle to within ±7%, and it became possible to use the die life cycle calculation algorithm into an automated system.

A Web-based Realtime Monitoring System for Photobioreactor (웹-기반 실시간 광생물 반응기 모니터링 시스템)

  • Sung, Won-Ki;Kim, Sung-Soo;Lee, Je-Hoon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.9
    • /
    • pp.4341-4348
    • /
    • 2012
  • This paper presents a web-based real-time monitoring system for a photobioreactor using an WiFi wireless network. An WiFi interface can support high speed data transfer, up to 11Mbps and it can be compatible with commercial wireless LAN environment. Thus, the proposed cell culture based on WiFi network can be easily applied to the reconfigurable system and real-time monitoring system. In this paper, we integrate the commercial WiFi module to the various bio-sensors and sensor control board to configure the wireless network. After we evaluate application S/W for monitoring the environment within incubator, we verify the proposed sensor networks for a cell culture system and its monitoring system. This result can be applicable for various bio-applications that require the network configuration and real-time monitoring system.

The Device Configuration Protocol with Real-Time Processing for QoS Support over IPv6 (IPv6 상에서 QoS 지원을 위한 실시간 처리용 DCP 프로토콜)

  • Joe, In-Whee
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.10B
    • /
    • pp.660-668
    • /
    • 2005
  • Recently, the Internet-based communication method has been adopted as an open networking solution in the field of remote control and data acquisition. In the current Internet, most networking applications are developed according to the client-server approach. In this paper, we propose an innovative Device Configuration Protocol (DCP) that exchanges the traditional role between client and server to provide a uniform device interface over the Internet for various field devices. The proposed protocol is implemented as an application-level protocol running on top of the standard TCP/IP protocols. Also, the DCP protocol is extended with real-time processing to work with the FlowLabel of IPv6 for QoS (Quality of Service) support. The simulation results show that the real-time packets can be processed prior to the given deadline regardless of throughput, as compared to the normal packets.

A Design and Application of HLA-Based Air Defense Simulation Framework (HLA 기반 대공유도무기 시뮬레이션 프레임워크 설계 및 사례적용)

  • Cho, Byung-Gyu;Kim, Sae-Hwan;Youn, Cheong
    • The KIPS Transactions:PartD
    • /
    • v.12D no.5 s.101
    • /
    • pp.709-718
    • /
    • 2005
  • To correspond with the unpredictable future tactical environment, Ive expanded the application of M&S(Modeling & Simulation) that is more scientific and more economic in a field of weapon system development process. This paper describes experience in development of ADSF(Air Defense Simulation Framework) that supports not only HLA(High Level Architecture) which is an international standard in M&S but also TCP/IP as well as real-time distributed simulation. ADSF has been applied to the M-SAM(Medium Range Surface to Air Missile) System Simulator, and satisfying test results through GPS(Global Positioning System) timer has been acquired. As a result, an ADSF which is able to support HLA and TCP/IP as veil as precise real-time simulation has been successfully made. we were in need or a real-time simulation engine to support Air Defense System Simulators that were consisted of several subsystems.

A Study on the Application of Real-time Environment Monitoring System in Underground Mines using Zigbee Technology (지그비 기술을 이용한 지하광산 내 실시간 환경 모니터링 시스템 현장 적용 연구)

  • Park, Yo Han;Lee, Hak Kyung;Seo, Man Keun;Kim, Jin
    • Tunnel and Underground Space
    • /
    • v.29 no.2
    • /
    • pp.108-123
    • /
    • 2019
  • In recent years, as safety management in underground mines has become more important in the worldwide, mine safety management technologies combining information communication technology such as real-time worker position tracking, monitoring system and equipment remote control have been developed. Wireless communication system is mainly applied to these technologies for the flexibility of network configuration. There are some cases the monitoring system was installed in domestic underground mines, but, it is necessary to develop the technology more suitable for domestic mining standard. In this study, we developed the real-time environmental monitoring system using ZigBee technology and examined the result of application to domestic limestone mine. Furthermore, applicability of the developed environment monitoring system to $VentSim^{TM}$ LiveView was checked. This study is expected to contribute to the related studies like the optimization of the ventilation system in underground mines.

Technology Trends in Digital Twins for Smart Cities (스마트 도시 실현을 위한 디지털 트윈 기술 동향)

  • Chang, Y.S.;Jang, I.S.
    • Electronics and Telecommunications Trends
    • /
    • v.36 no.1
    • /
    • pp.99-108
    • /
    • 2021
  • Digital twins are digital replicas of objects and systems in the real world. These digital replicas in a virtual environment can be connected with smart sensors and a variety of analyses, and simulations of real-time data from these sensors enable effective the operation, rapid feedback, and future predictions of real world phenomena. Until now, digital twins have been adopted and used mainly in the field of manufacturing, especially for smart factories. As digital twins are expected to be useful not only for productivity improvement but also for social problem solving, it is predicted that they will be extended to other fields such as those of transportation and cities. Digital twins will especially help realize smart cities through real-time monitoring, operation, and predictions using virtual digital twin cities. This paper summarizes the trends in digital twins for smart cities, the concept of digital twins, their application to smart cities, the strategies of various countries, and the development status of companies.

Integrated Middleware for Real-Time Device Drivers on Windows (윈도우즈 상에서 실시간 디바이스 드라이버를 위한 통합 미들웨어)

  • Jo, Ah-Ra;Song, Chang-In;Lee, Cheol-Hoon
    • The Journal of the Korea Contents Association
    • /
    • v.13 no.3
    • /
    • pp.22-31
    • /
    • 2013
  • For the case of test equipments requiring data accuracy, real-time is highly required in acceptance test for performance evaluation of developed weapons. For convenience' sake, test equipments are usually developed using Windows. However Windows does not support real-time in itself. Thus, in this paper, so as to reduce development time and expenses, we design and implement an integrated middleware for real-time device drivers using RTiK-MP. Using DLL, we also support user API's for the sake of development convenience without details of the complex RTiK-MP structure. We evaluate the performance of the proposed integrated middleware using the RDTSC command which returns the number of CPU clock ticks. The evaluation results show that it operates correctly within error ranges in the periods of 1ms and 4ms for the cases of TCP/IP and RS-232, respectively.

The Implementation of Patient Vital Sign Information Telemedicine System using TMO in Distributed Network Enviroment (분산 네트워크 환경하에서 TMO를 이용한 중환자 생체정보 원격 진료 시스템 구현)

  • Kim, Gwang-Jun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.13 no.6
    • /
    • pp.1128-1140
    • /
    • 2009
  • In this paper, we present a patient real-time vital sign information transmission system to effectively support developing real-time communication service by using a real-time object model named TMO (Time-Triggered Message-Triggered Object). Also, we describe the application environment as the ICU(Intensive Care Unit) to guarantee real-time service message with TMO structure in distributed network systems. We have to design to obtain useful vital sign information, which is generated at parsing data receiver modulor of HIS with TMO structure, that is offered by the central monitor. Vital sign informations of central monitor is composed of the raw data of several bedsite patient monitors. We are willing to maintain vital sign information of real time and continuity that is generated from the bedsite patient monitor. It is able to apply to remote medical examination and treatment. we proposed integration method between a vital sign database systems and hospital information systems. In the real time simulation techniques based on TMO object modeling, We have observed several advantages to the TMO structuring scheme. TMO object modeling has a strong traceability between requirement specification and design.

Real-time Hybrid Testing a Building Structure Equipped with Full-scale MR dampers and Application of Semi-active Control Algorithms (대형 MR감쇠기가 설치된 건축구조물의 실시간 하이브리드 실험 및 준능동 알고리즘 적용)

  • Park, Eun-Churn;Lee, Sung-Kyung;Lee, Heon-Jae;Moon, Suk-Jun;Jung, Hyung-Jo;Min, Kyung-Won
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.21 no.5
    • /
    • pp.465-474
    • /
    • 2008
  • The real-time hybrid testing method(RT-HYTEM) is a structural testing technique in which the numerical integration of the equation of motion for a numerical substructure and the physical testing for an experimental substructure are performed simultaneously in real-time. This study presents the quantitative evaluation of the seismic performance of a building structure installed with an passive and semi-active MR damper by using RT-HYTEM. The building model that was identified from the force-vibration testing results of a real-scaled 5-story building is used as the numerical substructure, and an MR damper corresponding to an experimental substructure is physically tested by using the universal testing machine(UTM). The RT-HYTEM implemented in this study is validated because the real-time hybrid testing results obtained by application of sinusoidal and earthquake excitations and the corresponding analytical results obtained by using the Bouc-Wen model as the control force of the MR damper respect to input currents were in good agreement. Also for preliminary study, some semi-active control algorithms were applied to the MR damper in order to control the structural responses optimally. Comparing between the test results of semi-active control using RT-HYTEM and numerical analysis results show that the RT-HYTEM is more resonable than numerical analysis to evaluate the performance of semi-active control algorithms.