• Title/Summary/Keyword: Real-scale Fire Test

Search Result 84, Processing Time 0.025 seconds

Flexural Performance of RC Beams Strengthened with NSM-GFRP Exposed to High Temperature (GFRP 표면매립공법으로 보강된 RC보의 고온노출 후 휨 성능)

  • Kim, Hee-Seung;Lee, Hye-Hak;Choi, Kyoung-Kyu
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.34 no.4
    • /
    • pp.35-42
    • /
    • 2018
  • This study evaluated the fire resisting capacity and post-fire serviceability of the concrete beams retrofitted by near surface mounted method(NSM) using GFRP plates. Main parameters in the test are grout materials and fire exposure. For the test, two types of grout materials between concrete substrate and GFRP plate were used; flame resisting epoxy and filling mortar. Four RC beam specimens were made and two of them were exposed to fire according to real scale fire curve proposed KS F 2257. After the fire exposure test, flexural test were performed to investigate the flexural performance of concrete beams including strength and deformation. From the test results, it was found that the beam retrofitted by NSM-GFRP presented higher flexural strength than that of the beam without retrofit, which indicates NSM-GFRP retrofit technologies is effective to maintain flexural strength even after fire exposure. In addition, the specimens grouted by epoxy showed good performance in strength but bad performance in ductility.

An Experiment Study for Flame Spread Prevention System of Snadwich Panels (샌드위치 패널의 화재확대 방지시스템 개발을 위한 실험적 연구)

  • Shin, Hyun-Joon;In, Ki-Ho;Yoo, Yong-Ho
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.27 no.6
    • /
    • pp.307-312
    • /
    • 2015
  • The sandwich panel is commonly used domestically because it's less costly and easier to handle. But fires have frequently occurred in buildings employing sandwich panels, such as the fires in Eecheon cold storage and in Gwangju Pyungdong industrial zone. Sandwich panels with steel plates on their surface prevent fire water from penetrating to the fire source, which makes it difficult to extinguish a fire in a timely manner. Toxic gas generated from some insulation material leads to serious loss of life and property. This study is intended to develop an extinguishing system for sandwich panels, thereby reducing the fire risk. Fire water and volume were determined in the wake of the study on the structure of a sandwich panel extinguishing system, and improvement and testing of the fire characteristics of the sandwich panel. Based on such study and test, a fire model test was conducted. Consequently, the sandwich panel with extinguishing system was proven to have a reduced fire risk, compared to traditional or fire retardant panels.

A Numerical Analysis for Fire Spread Mechanism of Residential Building Fire (주거용 건축물의 화염전파 현상에 대한 수치해석적 검토)

  • Ahn, Chan-Sol;Kim, Heung-Youl;You, Yong-Ho;Kim, Hyung-Jun
    • Fire Science and Engineering
    • /
    • v.26 no.1
    • /
    • pp.31-37
    • /
    • 2012
  • This study is intended to present a computational thermal model for a residential building. As the Performance Based Design is more popular, fire-intensity and fire-load have turned out to be very important factors for building design and can be predicted through some computational work. To predict and estimate the fire properties of a residential fire, we made some numerical models of combustibles and residential building. In a bid to validate the estimate values, computational analysis results from numerical models were compared with real fire tests. For computational analysis, the Fire Dynamics Simulator (FDS) was used with Large Eddy Simulation (LES) model for turbulence. Consequently, fire-intensity was well predicted and flash-over of rooms were successfully estimated.

A Study on Fire Characteristics of Solid Combustible Materials Based on Real Scale Fire Test (실규모 실험에 의한 고체가연물의 화재특성 연구)

  • Kim, Sung-Chan
    • Fire Science and Engineering
    • /
    • v.25 no.5
    • /
    • pp.62-68
    • /
    • 2011
  • A series of fire tests involving realistic solid combustible materials was conducted to quantify the heat release rate and investigate the fire growth characteristics during the initial fire growth stage. For these tests, single/double wood cribs, urethane cushion having polypropylene covers and wood crib on nylon carpet with urethane carpet padding were used as a fuel source. The fire growth coefficient of the solid combustible materials was quantified and the fire growth characteristics were compared with the $t^2$ fire scenario. The mean effective heat of combustion was evaluated by the total mass loss of fuel and total energy release concept and examined the effect of the ventilation and fire condition. The present study provides the practical information on the fire growth characteristics of solid combustible material to design to a set of fire scenarios for the fire risk analysis.

The Study on Real Scale Fire Test for Fire Growth of Office (사무용 공간의 화재 성장 예측을 위한 실물화재실험)

  • Kweon, Oh-Sang;Kim, Heung-Youl;Kim, Jung-Hyun
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 2012.04a
    • /
    • pp.278-281
    • /
    • 2012
  • 사무공간의 화재성상을 예측하기 위해 화재하중 $25kg/m^2$ 값을 적용하여 $2.4(L){\times}3.6(W){\times}2.4(H)\;m$ 크기의 Mock-up 화재실험을 진행하였다. 화재실험은 실물화재실험 장비인 LSC(Large Scale Calorimeter)에서 실시하였으며, 열방출률 및 질량감소율을 측정하였다. 실물화재실험 시작 후 약 1110 초에 플래시오버가 발생하였으며, 최대 열발출률은 1241.1 KW로 측정되었고 질량은 초기 219 kg에서 102 kg로 감소하였다.

  • PDF

Application to ISO 13784-1 and ISO TS 17431 as Real scale fire test methods for analyzing sandwich panel's Heat release rate (ISO 13784-1과 ISO TS 17431(Model Box Test)에 적용을 통한 실대규모화재시편의 열방출율 분석)

  • Park, Kye-Won;Jeong, Jae-Gun;Kweon, Oh-Sang;Yoo, Yong-Ho;Kim, Heung-Youl;Hayashi, Yoshihiko;Johansson, Patrik
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 2011.04a
    • /
    • pp.196-200
    • /
    • 2011
  • ISO 13784-1 sandwich panel tests were conducted by FILK, KICT in Korea and SP in Sweden. Sandwich panels composed of steel sheets, EPS and glass wool supplied by FILK were tested. And in parallel, the same materials were tested using ISO TS17431 model box tests at GBRC and TUS in Japan.

  • PDF

The Real Scale Fire Tests for Vertical Fire Spread Study of External Finishing Material (외벽 마감재료의 수직화재 확산 연구를 위한 실물화재 실험)

  • Kweon, Oh-Sang;Yoo, Yong-Ho;Kim, Heung-Youl;Kim, Jung-Hyun;Min, Se-Hong
    • Fire Science and Engineering
    • /
    • v.26 no.6
    • /
    • pp.85-91
    • /
    • 2012
  • To reduce human life and property damage at the fire in a building, it is most critical to control flame spread in the early stage. Fire spread prevention measure generally includes fire resistance performance securing of structure member in the arson zone and use limitation based on combustion performance of finishing material. The latter is most fundamental fire safety design to determine flame spread, but domestic combustion test determines combustion performance by specimen sized fire test method. Thus, there are many restrictions in the determination of combustion performance by composite material such as sandwich panel. Especially, outer finishing material uses a variety of composite material such as dry bit, aluminum composite panel, and metal panel compared to inner finishing material. Therefore, this study would determine vertical fire spread features by a full scaled fire experiment through the test method of ISO 13785-2, an international test standard.

A Study on the Analysis of the Combustion Behavior and Carbonization Pattern of Vinyl Flooring on Which a Real-Scale Combustion Test Was Performed (실물 연소 실험이 진행된 비닐장판의 연소거동 및 탄화 패턴 해석에 관한 연구)

  • Joe, Hi-Su;Choi, Chung-Seog
    • Fire Science and Engineering
    • /
    • v.33 no.6
    • /
    • pp.120-125
    • /
    • 2019
  • A real-scale combustion test was conducted on a vinyl flooring in a divided space, with 50 mL of an inflammable liquid sprayed on it. The combustion behavior of the vinyl flooring was studied in real time, and the carbonization patterns of the surface and cross-sections of the carbonized vinyl floor were analyzed. When the flame ignited by gasoline reached its peak, a continuously flaming region, intermittent flaming region, plume region, etc., were formed. The combustion of 50 mL gasoline on vinyl flooring took 26 s, and a halo pattern was observed. This test involved spraying kerosene evenly on the vinyl flooring and attempting to ignite the flooring using a gas torch, which failed. After the combustion of the vinyl flooring was complete, its carbonized range was measured to be 600 mm in length and 380 mm in width, and the carbonized area was 1000 ㎟. Heat transformed the coated layer of surface of the carbonized vinyl flooring into a carbonized layer, which became harder. The analysis of cross-section of the boundary surface of the carbonized vinyl flooring using a stereoscopic microscope showed that the vinyl flooring was bubbling, and that the white boundary layer at the bottom of the coated layer had disappeared.

Fire Suppression Experiment for Road Tunnel Low Pressure Water Spray Systems (도로터널 저압 물분무설비 화재진압 실험)

  • Choi, Byung-Il;Han, Yong-Shik;Kim, Myung-Bae;So, Soo-Hyun
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 2008.04a
    • /
    • pp.218-221
    • /
    • 2008
  • The real scale fire suppression test inside a road tunnel were carried out for water spray systems. The dimension of the tunnel is 7.5m in height and 11.6m in width. 3 different water spray nozzle systems with low operating pressure less than 3.5 bar were used in the experiment. Two types of fires were tested. One is a $1.4m^2$ heptane pool fire and the other is a 2000CC passenger car fire. From the experiment, the spray densities of tested systems were about $6.0\;l/min/m^2$ which is currunt domestic guideline. Although all the systems cannot extinguish the tested fires, it was found that they can reduce the tunnel temperature and have a capability to control and suppress the tested fire.

  • PDF

Experimental Study on the Fire Behavior in Double Deck Tunnel (복층터널내 화재특성에 대한 실험적 연구)

  • Park, Jin-Ouk;Yoo, Yong-Ho;Kim, Hwi-Seung;Park, Byoung-Jik
    • Fire Science and Engineering
    • /
    • v.30 no.2
    • /
    • pp.75-80
    • /
    • 2016
  • In the wake of expanding and overpopulating urban areas, traffic congestion has been worsening increasingly, causing huge economic losses. In a bid to effectively use the space of metropolitan areas, the construction and operation of a double deck tunnel has been on the rise. On the other hand, a lower height of a double deck tunnel is expected to generate more smoke and soot in a fire than other usual tunnels. Therefore, it is undesirable to apply the standard for fire intensity or smoke generation, which were designed for existing road tunnels. A part of an effort to propose a design fire curve that is useful for double deck tunnel, is intended to obtain and analyze the fire characteristics in a double deck tunnel through a real scale fire test. The test was conducted according to the fire scenario with one passenger car and two passenger cars; the monitored fire intensity was a maximum of 2.4 MW and 3.5 MW, respectively.