• Title/Summary/Keyword: Real-Time Polymerase Chain Reaction

Search Result 797, Processing Time 0.026 seconds

Mild Traumatic Brain Injury and Subsequent Acute Pulmonary Inflammatory Response

  • Lim, Seung Hyuk;Jung, Harry;Youn, Dong Hyuk;Kim, Tae Yeon;Han, Sung Woo;Kim, Bong Jun;Lee, Jae Jun;Jeon, Jin Pyeong
    • Journal of Korean Neurosurgical Society
    • /
    • v.65 no.5
    • /
    • pp.680-687
    • /
    • 2022
  • Objective : The influence of moderate-to-severe traumatic brain injury (TBI) on acute pulmonary injury is well established, but the association between acute pulmonary injury and mild TBI has not been well studied. Here, we evaluated the histological changes and fluctuations in inflammatory markers in the lungs to determine whether an acute pulmonary inflammatory response occurred after mild TBI. Methods : Mouse models of mild TBI (n=24) were induced via open-head injuries using a stereotaxic impactor. The brain and lungs were examined 6, 24, and 72 hours after injury and compared to sham-operated controls (n=24). Fluoro-Jade B staining and Astra blue and hematoxylin staining were performed to assess cerebral neuronal degeneration and pulmonary histological architecture. Quantitative real-time polymerase chain reaction analysis was done to measure inflammatory cytokines. Results : Increased neuronal degeneration and the mRNA expression of interleukin (IL)-6, tumor necrosis factor (TNF)-α, IL-10, and transforming growth factor (TGF)-β were observed after mild TBI. The IL-6, TNF-α, and TGF-β levels in mice with mild TBI were significantly different compared to those of sham-operated mice 24 hours after injury, and this was more pronounced at 72 hours. Mild TBI induced acute pulmonary interstitial edema with cell infiltration and alveolar morphological changes. In particular, a significant infiltration of mast cells was observed. Among the inflammatory cytokines, TNF-α was significantly increased in the lungs at 6 hours, but there was no significant difference 24 and 72 hours after injury. Conclusion : Mild TBI induced acute pulmonary interstitial inflammation and alveolar structural changes, which are likely to worsen the patient's prognosis.

Wall shear stress on vascular smooth muscle cells exerts angiogenic effects on extracranial arteriovenous malformations

  • Ryu, Jeong Yeop;Park, Tae Hyun;Lee, Joon Seok;Oh, Eun Jung;Kim, Hyun Mi;Lee, Seok-Jong;Lee, Jongmin;Lee, Sang Yub;Huh, Seung;Kim, Ji Yoon;Im, Saewon;Chung, Ho Yun
    • Archives of Plastic Surgery
    • /
    • v.49 no.1
    • /
    • pp.115-120
    • /
    • 2022
  • Background In addition to vascular endothelial cells, vascular smooth muscle cells (VSMCs) are subject to continuous shear stress because of blood circulation. The angiogenic properties of VSMCs in extracranial arteriovenous malformations (AVMs) may exceed those of normal blood vessels if the body responds more sensitively to mechanical stimuli. This study was performed to investigate the hypothesis that rapid angiogenesis may be achieved by mechanical shear stress. Methods VSMCs were obtained from six patients who had AVMs and six normal controls. The target genes were set to angiopoietin-2 (AGP2), aquaporin-1 (AQP1), and transforming growth factor-beta receptor 1 (TGFBR1). Reverse-transcriptase polymerase chain reaction (RT-PCR) and real-time PCR were implemented to identify the expression levels for target genes. Immunofluorescence was also conducted. Results Under the shear stress condition, mean relative quantity values of AGP2, AQP1, and TGFBR1 in AVM tissues were 1.927±0.528, 1.291±0.031, and 2.284±1.461 when compared with neutral conditions. The expression levels of all three genes in AVMs were higher than those in normal tissue except for AQP1 under shear stress conditions. Immunofluorescence also revealed increased staining of shear stress-induced genes in the normal tissue and in AVM tissue. Conclusions Shear stress made the VSMCs of AVMs more sensitive. Although the pathogenesis of AVMs remains unclear, our study showed that biomechanical stimulation imposed by shear stress may aggravate angiogenesis in AVMs.

Anti-microbial and anti-inflammatory effects of Cheonwangbosim-dan against Helicobacter pylori-induced gastritis

  • Park, Hee-Seon;Jeong, Hye-Yun;Kim, Young-Suk;Seo, Chang-Seob;Ha, Hyekyung;Kwon, Hyo-Jung
    • Journal of Veterinary Science
    • /
    • v.21 no.3
    • /
    • pp.39.1-39.15
    • /
    • 2020
  • Background: There are various Helicobacter species colonizing the stomachs of animals. Although Helicobacter species usually cause asymptomatic infection in the hosts, clinical signs can occur due to gastritis associated with Helicobacter in animals. Among them, Helicobacter pylori is strongly associated with chronic gastritis, gastric ulcers, and gastric cancers. As the standard therapies used to treat H. pylori have proven insufficient, alternative options are needed to prevent and eradicate the diseases associated with this bacterium. Cheonwangbosim-dan (CBD), a traditional herbal formula that is popular in East Asia, has been commonly used for arterial or auricular flutter, neurosis, insomnia, and cardiac malfunction-induced disease. Objectives: The present study investigated the antimicrobial effect of CBD on H. pylori-infected human gastric carcinoma AGS cells and model mice. Methods: AGS cells were infected with H. pylori and treated with a variety of concentrations of CBD or antibiotics. Mice were given 3 oral inoculations with H. pylori and then dosed with CBD (100 or 500 mg/kg) for 4 weeks or with standard antibiotics for 1 week. One week after the last treatment, gastric samples were collected and examined by histopathological analysis, real-time quantitative polymerase chain reaction, and immunoblotting. Results: Our results showed that CBD treatment of AGS cells significantly reduced the H. pylori-induced elevations of interleukin-8, inducible nitric oxide synthase (iNOS), and cyclooxygenase-2 (COX-2). In the animal model, CBD treatment inhibited the colonization of H. pylori and the levels of malondialdehyde, inflammation, proinflammatory cytokines, iNOS, and COX-2 in gastric tissues. CBD also decreased the phosphorylation levels of p38 mitogen-activated protein kinase family. Conclusions: This study suggests that CBD might be a prospective candidate for treating H. pylori-induced gastric injury.

Identification of urinary microRNA biomarkers for in vivo gentamicin-induced nephrotoxicity models

  • Jeon, Byung-Suk;Lee, Soo-ho;Hwang, So-Ryeon;Yi, Hee;Bang, Ji-Hyun;Tham, Nga Thi Thu;Lee, Hyun-Kyoung;Woo, Gye-Hyeong;Kang, Hwan-Goo;Ku, Hyun-Ok
    • Journal of Veterinary Science
    • /
    • v.21 no.6
    • /
    • pp.81.1-81.10
    • /
    • 2020
  • Background: Although previous in vivo studies explored urinary microRNA (miRNA), there is no agreement on nephrotoxicity-specific miRNA biomarkers. Objectives: In this study, we assessed whether urinary miRNAs could be employed as biomarkers for nephrotoxicity. Methods: For this, literature-based candidate miRNAs were identified by reviewing the previous studies. Female Sprague-Dawley rats received subcutaneous injections of a single dose or repeated doses (3 consecutive days) of gentamicin (GEN; 137 or 412 mg/kg). The expression of miRNAs was analyzed by real-time reverse transcription-polymerase chain reaction in 16 h pooled urine from GEN-treated rats. Results: GEN-induced acute kidney injury was confirmed by the presence of tubular necrosis. We identified let-7g-5p, miR-21-3p, 26b-3p, 192-5p, and 378a-3p significantly upregulated in the urine of GEN-treated rats with the appearance of the necrosis in proximal tubules. Specifically, miR-26-3p, 192-5p, and 378a-3p with highly expressed levels in urine of rats with GEN-induced acute tubular injury were considered to have sensitivities comparable to clinical biomarkers, such as blood urea nitrogen, serum creatinine, and urinary kidney injury molecule protein. Conclusions: These results indicated the potential involvement of urinary miRNAs in chemical-induced nephrotoxicity, suggesting that certain miRNAs could serve as biomarkers for acute nephrotoxicity.

Porcine parvovirus nonstructural protein NS1 activates NF-κB and it involves TLR2 signaling pathway

  • Jin, Xiaohui;Yuan, Yixin;Zhang, Chi;Zhou, Yong;Song, Yue;Wei, Zhanyong;Zhang, Gaiping
    • Journal of Veterinary Science
    • /
    • v.21 no.3
    • /
    • pp.50.1-50.16
    • /
    • 2020
  • Background: Porcine parvovirus (PPV) is a single-stranded DNA virus that causes porcine reproductive failure. It is of critical importance to study PPV pathogenesis for the prevention and control of the disease. NS1, a PPV non-structural protein, is participated in viral DNA replication, transcriptional regulation, and cytotoxicity. Our previous research showed that PPV can activate nuclear factor kappa B (NF-κB) signaling pathway and then up-regulate the expression of interleukin (IL)-6. Objectives: Herein, the purpose of this study is to determine whether the non-structural protein NS1 of PPV also has the same function. Methods: Real-time quantitative reverse transcription polymerase chain reaction (RT-qPCR), enzyme-linked immunosorbent assay, western blot, immunofluorescence assay and small interfering RNA (siRNA) were used. Results: Our findings demonstrated that PPV NS1 protein can up-regulate the expression levels of IL-6 and tumor necrosis factor-alpha in a dose-dependent manner. Moreover, PPV NS1 protein was found to induce the phosphorylation of IκBα, then leading to the phosphorylation and nuclear translocation of NF-κB. In addition, the NS1 protein activated the upstream pathways of NF-κB. Meanwhile, TLR2-siRNA assay showed TLR2 plays an important role in the activation of NF-κB signaling pathway induced by PPV-NS1. Conclusions: These findings indicated that PPV NS1 protein induced the up-regulated of IL-6 expression through activating the TLR2 and NF-κB signaling pathways. In conclusion, these findings provide a new avenue to study the innate immune mechanism of PPV infection.

Enzymatic bioconversion of ginseng powder increases the content of minor ginsenosides and potentiates immunostimulatory activity

  • Park, Jisang;Kim, Ju;Ko, Eun-Sil;Jeong, Jong Hoon;Park, Cheol-Oh;Seo, Jeong Hun;Jang, Yong-Suk
    • Journal of Ginseng Research
    • /
    • v.46 no.2
    • /
    • pp.304-314
    • /
    • 2022
  • Background: Ginsenosides are biologically active components of ginseng and have various functions. In this study, we investigated the immunomodulatory activity of a ginseng product generated from ginseng powder (GP) via enzymatic bioconversion. This product, General Bio compound K-10 mg solution (GBCK10S), exhibited increased levels of minor ginsenosides, including ginsenoside-F1, compound K, and compound Y. Methods: The immunomodulatory properties of GBCK10S were confirmed using mice and a human natural killer (NK) cell line. We monitored the expression of molecules involved in immune responses via enzyme-linked immunosorbent assay, flow cytometry, NK cell-targeted cell destruction, quantitative reverse-transcription real-time polymerase chain reaction, and Western blot analyses. Results: Oral administration of GBCK10S significantly increased serum immunoglobulin M levels and primed splenocytes to express pro-inflammatory cytokines such as interleukin-6, tumor necrosis factor-α, and interferon-γ. Oral administration of GBCK10S also activated NK cells in mice. Furthermore, GBCK10S treatment stimulated a human NK cell line in vitro, thereby increasing granzyme B gene expression and activating STAT5. Conclusion: GBCK10S may have potent immunostimulatory properties and can activate immune responses mediated by B cells, Th1-type T cells, and NK cells.

Inhibitory Effects of GGX on Lung Injury of Chronic Obstructive Lung Disease (COPD) Mice Model (만성폐쇄성폐질환 동물모델에서 GGX의 폐손상 억제 효과)

  • Kim, Tae Hyeon;Yang, Won Kyung;Lee, Su Won;Kim, Seung Hyung;Lyu, Yee Ran;Park, Yang Chun
    • The Journal of Korean Medicine
    • /
    • v.42 no.3
    • /
    • pp.56-71
    • /
    • 2021
  • Objectives: This study is aimed to evaluate the protective effects of GGX on lung injury of Chronic Obstructive Lung Disease (COPD) mice model. Materials and Methods: C57BL/6 mice were challenged with lipopolysaccharide (LPS) and cigarette smoke extract (CSE) and then treated with vehicle only (Control group), dexamethasone 3 mg/kg (Dexa group), gam-gil-tang 200 mg/kg (GGT group), GGX 100, 200, and 400 mg/kg (GGX group). After sacrifice, its bronchoalveolar lavage fluid (BALF) or lung tissue was analyzed with cytospin, Enzyme-Linked Immunosorbent Assay (ELISA), real-time polymerase chain reaction (PCR) and hematoxylin & eosin (H&E), and Masson's trichrome staining. Results: In the COPD model, GGX significantly inhibited the increase of neutrophils, TNF-𝛼, IL-17A, CXCL-1, MIP2 in BALF and TNF-𝛼, IL-1𝛽, IL-10 mRNA expression in lung tissue. It also decreased the severity of histological lung injury. Conclusion: This study suggests the usability of GGX for COPD patients by controlling lung tissue injury.

RNA Binding Protein Rbms1 Enables Neuronal Differentiation and Radial Migration during Neocortical Development by Binding and Stabilizing the RNA Message for Efr3a

  • Habib, Khadija;Bishayee, Kausik;Kang, Jieun;Sadra, Ali;Huh, Sung-Oh
    • Molecules and Cells
    • /
    • v.45 no.8
    • /
    • pp.588-602
    • /
    • 2022
  • Various RNA-binding proteins (RBPs) are key components in RNA metabolism and contribute to several neurodevelopmental disorders. To date, only a few of such RBPs have been characterized for their roles in neocortex development. Here, we show that the RBP, Rbms1, is required for radial migration, polarization and differentiation of neuronal progenitors to neurons in the neocortex development. Rbms1 expression is highest in the early development in the developing cortex, with its expression gradually diminishing from embryonic day 13.5 (E13.5) to postnatal day 0 (P0). From in utero electroporation (IUE) experiments when Rbms1 levels are knocked down in neuronal progenitors, their transition from multipolar to bipolar state is delayed and this is accompanied by a delay in radial migration of these cells. Reduced Rbms1 levels in vivo also reduces differentiation as evidenced by a decrease in levels of several differentiation markers, meanwhile having no significant effects on proliferation and cell cycle rates of these cells. As an RNA binding protein, we profiled the RNA binders of Rbms1 by a cross-linked-RIP sequencing assay, followed by quantitative real-time polymerase chain reaction verification and showed that Rbms1 binds and stabilizes the mRNA for Efr3a, a signaling adapter protein. We also demonstrate that ectopic Efr3a can recover the cells from the migration defects due to loss of Rbms1, both in vivo and in vitro migration assays with cultured cells. These imply that one of the functions of Rbms1 involves the stabilization of Efr3a RNA message, required for migration and maturation of neuronal progenitors in radial migration in the developing neocortex.

Viral load and rebound in children with coronavirus disease 2019 during the first outbreak in Daegu city

  • Chu, Mi Ae;Jang, Yoon Young;Lee, Dong Won;Kim, Sung Hoon;Ryoo, Namhee;Park, Sunggyun;Lee, Jae Hee;Chung, Hai Lee
    • Clinical and Experimental Pediatrics
    • /
    • v.64 no.12
    • /
    • pp.652-660
    • /
    • 2021
  • Background: Viral load and shedding duration are highly associated with the transmission of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection. However, limited studies have reported on viral load or shedding in children and adolescents infected with sudden acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Purpose: This study aimed to investigate the natural course of viral load in asymptomatic or mild pediatric cases. Methods: Thirty-one children (<18 years) with confirmed SARS-CoV-2 infection were hospitalized and enrolled in this study. Viral loads were evaluated in nasopharyngeal swab samples using real-time reverse transcription polymerase chain reaction (E, RdRp, N genes). cycle threshold (Ct) values were measured when patients met the clinical criteria to be released from quarantine. Results: The mean age of the patients was 9.8 years, 18 (58%) had mild disease, and 13 (42%) were asymptomatic. Most children were infected by adult family members, most commonly by their mothers. The most common symptoms were fever and sputum (26%), followed by cough and runny nose. Nine patients (29%) had a high or intermediate viral load (Ct value≤30) when they had no clinical symptoms. Viral load showed no difference between symptomatic and asymptomatic patients. Viral rebounds were found in 15 cases (48%), which contributed to prolonged viral detection. The mean duration of viral detection was 25.6 days. Viral loads were significantly lower in patients with viral rebounds than in those with no rebound (E, P=0.003; RdRp, P=0.01; N, P=0.02). Conclusion: Our study showed that many pediatric patients with coronavirus disease 2019 (COVID-19) experienced viral rebound and showed viral detection for more than 3 weeks. Further studies are needed to investigate the relationship between viral rebound and infectiousness in COVID-19.

Ante-Mortem Diagnosis of an Atypical Mixed Form of Feline Infectious Peritonitis through Pericardial Effusion Analysis in a Cat

  • Junyoung Kim;Yebeen Kim;Jihye Choi;Junghee Yoon
    • Journal of Veterinary Clinics
    • /
    • v.40 no.4
    • /
    • pp.308-313
    • /
    • 2023
  • A 1-year-old castrated male Korean Shorthair cat presented with dyspnea, anorexia, lethargy, and seizures. Physical examination revealed salivation, right forelimb hemiparesis, and rapid breathing. No abnormalities were detected on auscultation. Laboratory findings revealed increased levels of bilirubin, aspartate aminotransferase (AST), globulin, glucose, and a decreased albumin-to-globulin (A:G) ratio. Both N-terminal pro-B-type natriuretic peptide (NT-proBNP) and feline serum amyloid A (fSAA) levels were significantly elevated. Thoracic radiography revealed mild cardiomegaly and diffuse increased interstitial infiltration with soft tissue opacity in the periphery of the right caudal pleural space. Echocardiography and lung ultrasonography were performed to investigate the cause of mild cardiomegaly and soft tissue opacity in the pleural space. Echocardiography revealed a mild amount of echogenic pericardial effusion, and lung ultrasonography showed an echogenic soft tissue mass with no blood signal in the right caudal pleural space, suggestive of a granulomatous lesion. After obtaining 5 mL of pericardial fluid through pericardiocentesis, cytology of the pericardial effusion sample revealed marked neutrophils and macrophages with no bacteria. IDEXX feline infectious peritonitis (FIP) virus real-time reverse transcriptase polymerase chain reaction (RT-PCR) confirmed the presence of the FIP virus biotype in the sample. This case presents a rarely reported atypical mixed form of FIP in a cat diagnosed ante-mortem using pericardial effusion analysis. In this case, ultrasound examination played a crucial role in the definitive diagnosis of FIP by PCR biotyping through pericardiocentesis. Ultrasonography can be highly beneficial in guiding the diagnosis and evaluation of cats with suspected FIP.