• Title/Summary/Keyword: Real-Time Polymerase Chain Reaction

Search Result 826, Processing Time 0.033 seconds

Selection and evaluation of reference genes for gene expression using quantitative real-time PCR in Mythimna separata walker (Lepidoptera: Noctuidae)

  • ZHANG, Bai-Zhong;LIU, Jun-Jie;CHEN, Xi-Ling;YUAN, Guo-Hui
    • Entomological Research
    • /
    • v.48 no.5
    • /
    • pp.390-399
    • /
    • 2018
  • In order to precisely assess gene expression levels, the suitable internal reference genes must be served to quantify real-time reverse transcription polymerase chain reaction (RT-qPCR) data. For armyworm, Mythimna separata, which reference genes are suitable for assessing the level of transcriptional expression of target genes have yet to be explored. In this study, eight common reference genes, including ${\beta}$-actin (${\beta}$-ACT), 18 s ribosomal (18S), 28S ribosomal (28S), glyceraldehyde-3-phosphate (GAPDH), elongation fator-alpha ($EF1{\alpha}$), TATA box binding protein (TBP), ribosomal protein L7 (RPL7), and alpha-tubulin (${\alpha}$-TUB) that in different developmental stages, tissues and insecticide treatments of M. separata were evaluated. To further explore whether these genes were suitable to serve as endogenous controls, three software-based approaches (geNorm, BestKeeper, and NormFinder), the delta Ct method, and one web-based comprehensive tool (RefFinder) were employed to analyze and rank the tested genes. The optimal number of reference genes was determined using the geNorm program, and the suitability of particular reference genes was empirically validated according to normalized HSP70, and MsepCYP321A10 gene expression data. We found that the most suitable reference genes for the different experimental conditions. For developmental stages, 28S/RPL7 were the optimal reference genes, both $RPL7/EF1{\alpha}$ were suitable for experiments of different tissues, whereas for insecticide treatments, $28S/{\alpha}-TUB$ were suitable for normalizations of expression data. In addition, $28S/{\alpha}-TUB$ were the suitable reference genes because they have the most stable expression among different developmental stages, tissues and insecticide treatments. Our work is the first report on reference gene selection in M. separata, and might serve as a precedent for future gene expression studies.

The anti-inflammatory effects of ethanol extract of Allium Hookeri cultivated in South Korea (국내산 삼채 에탄올 추출물의 항염증 효과)

  • Bae, Gi-Choon;Bae, Dae-Yeoll
    • The Korea Journal of Herbology
    • /
    • v.27 no.6
    • /
    • pp.55-61
    • /
    • 2012
  • Objectives : Allium Hookeri (AH) is a traditional herb to treat inflammatory diseases in India and Myanmar. Recently, AH cultivation was succeeded in South Korea. This study was performed to evaluate the anti-inflammatory effects of Korean AH in RAW264.7 cells, mouse macrophage cell line. Methods : To evaluate the anti-inflammatory effects of root of AH, we prepared the 70% ethanol extract, then we examined the productions of nitrite, and pro-inflammatory cytokines. To examine the nitrite, and cytokines, the RAW264.7 cells were treated with AH, then stimulated with lipopolysaccharide (LPS, 500 ng/ml) for 24 h. Then the cells were harvested for griess assay, ELISA and real-time reverse transcription polymerase chain reaction (RT-PCR). Also to detect the ability of AH to induce heme oxygenase-1 (HO-1), we examined the HO-1 expression using real time RT-PCR and western blot. Furthermore, we examined the mitogen activated-protein kinases (MAPKs) and nuclear factor kappa B (NF-${\kappa}B$) activation to find out the underlying mechanisms. Results : AH ethanol extract significantly inhibited the productions of nitrite and interleukin (IL)-$1{\beta}$. AH treatment increased the HO-1 expression dramatically at 1 h, then peaked at 3 h. When the HO-1 was inhibited by tin (Sn) protoporphryin-IX (SnPP), the anti-inflammatory action of AH was reversed. AH treatment inhibited the activation of p38, but not extracelluar signal-regulated kinase (ERK 1/2) and c-Jun $NH_2$-terminal kinase (JNK) and also the degradation of inhibitory kappa B a (Ik-$B{\alpha}$) in the LPS-stimulated RAW 264.7 cells. Conclusions : These data could suggest that AH exerts anti-inflammatory influences through up-regulation of HO-1 and deactivation of p38.

Increased interleukin-6 and TP53 levels in rotator cuff tendon repair patients with hypercholesterolemia

  • Jong Pil Yoon;Seung Gi Min;Jin-Hyun Choi;Hyun Joo Lee;Kyeong Hyeon Park;Sung Hyuk Yoon;Seong Soo Kim;Seok Won Chung;Hun-Min Kim;Dong Hyun Kim
    • Clinics in Shoulder and Elbow
    • /
    • v.25 no.4
    • /
    • pp.296-303
    • /
    • 2022
  • Background: A previous study reported that hyperlipidemia increases the incidence of tears in the rotator cuff tendon and affects healing after repair. The aim of our study was to compare the gene and protein expression of torn rotator cuff tendons in patients both with and without hypercholesterolemia. Methods: Thirty patients who provided rotator cuff tendon samples were classified into either a non-hypercholesterolemia group (n=19, serum total cholesterol [TC] <200 mg/dL) and hypercholesterolemia group (n=11, serum TC ≥240 mg/dL) based on their concentrations of serum TC. The expression of various genes of interest, including COL1A1, IGF1, IL-6, MMP2, MMP3, MMP9, MMP13, TNMD, and TP53, was analyzed by real-time quantitative reverse transcription polymerase chain reaction (qRT-PCR). In addition, Western blot analysis was performed on the proteins encoded by interleukin (IL)-6 and TP53 that showed significantly different expression levels in real-time qRT-PCR. Results: Except for IGF1, the gene expression levels of IL-6, MMP2, MMP9, and TP53 were significantly higher in the hypercholesterolemic group than in the non-hypercholesterolemia group. Western blot analysis confirmed significantly higher protein levels of IL-6 and TP53 in the hypercholesterolemic group (p<0.05). Conclusions: We observed an increase in inflammatory cytokine and matrix metalloproteinase (MMP) levels in hypercholesterolemic patients with rotator cuff tears. Increased levels of IL-6 and TP53 were observed at both the mRNA and protein levels. We suggest that the overexpression of IL-6 and TP53 may be a specific feature in rotator cuff disease patients with hypercholesterolemia.

Effective microbial molecular diagnosis of periodontitis-related pathogen Porphyromonas gingivalis from salivary samples using rgpA gene

  • Jinuk Jeong;Yunseok Oh;Junhyeon Jeon;Dong-Heon Baek;Dong Hee Kim;Kornsorn Srikulnath;Kyudong Han
    • Genomics & Informatics
    • /
    • v.21 no.1
    • /
    • pp.13.1-13.8
    • /
    • 2023
  • Importance of accurate molecular diagnosis and quantification of particular disease-related pathogenic microorganisms is highlighted as an introductory step to prevent and care for diseases. In this study, we designed a primer/probe set for quantitative real-time polymerase chain reaction (qRT-PCR) targeting rgpA gene, known as the specific virulence factor of periodontitis-related pathogenic bacteria 'Porphyromonas gingivalis', and evaluated its diagnostic efficiency by detecting and quantifying relative bacterial load of P. gingivalis within saliva samples collected from clinical subjects. As a result of qRT-PCR, we confirmed that relative bacterial load of P. gingivalis was detected and quantified within all samples of positive control and periodontitis groups. On the contrary, negative results were confirmed in both negative control and healthy groups. Additionally, as a result of comparison with next-generation sequencing (NGS)-based 16S metagenome profiling data, we confirmed relative bacterial load of P. gingivalis, which was not identified on bacterial classification table created through 16S microbiome analysis, in qRT-PCR results. It showed that an approach to quantifying specific microorganisms by applying qRT-PCR method could solve microbial misclassification issues at species level of an NGS-based 16S microbiome study. In this respect, we suggest that P. gingivalis-specific primer/probe set introduced in present study has efficient applicability in various oral healthcare industries, including periodontitis-related microbial molecular diagnosis field.

Comparison of microbial molecular diagnosis efficiency within unstable template metagenomic DNA samples between qRT-PCR and chip-based digital PCR platforms

  • Dongwan Kim;Junhyeon Jeon;Minseo Kim;Jinuk Jeong;Young Mok Heo;Dong-Geol Lee;Dong Keon Yon;Kyudong Han
    • Genomics & Informatics
    • /
    • v.21 no.4
    • /
    • pp.52.1-52.10
    • /
    • 2023
  • Accurate and efficient microbial diagnosis is crucial for effective molecular diagnostics, especially in the field of human healthcare. The gold standard equipment widely employed for detecting specific microorganisms in molecular diagnosis is quantitative real-time polymerase chain reaction (qRT-PCR). However, its limitations in low metagenomic DNA yield samples necessitate exploring alternative approaches. Digital PCR, by quantifying the number of copies of the target sequence, provides absolute quantification results for the bacterial strain. In this study, we compared the diagnostic efficiency of qRT-PCR and digital PCR in detecting a particular bacterial strain (Staphylococcus aureus), focusing on skin-derived DNA samples. Experimentally, specific primer for S. aureus were designed at transcription elongation factor (greA) gene and the target amplicon were cloned and sequenced to validate efficiency of specificity to the greA gene of S. aureus. To quantify the absolute amount of microorganisms present on the skin, the variable region 5 (V5) of the 16S rRNA gene was used, and primers for S. aureus identification were used to relative their amount in the subject's skin. The findings demonstrate the absolute convenience and efficiency of digital PCR in microbial diagnostics. We suggest that the high sensitivity and precise quantification provided by digital PCR could be a promising tool for detecting specific microorganisms, especially in skin-derived DNA samples with low metagenomic DNA yields, and that further research and implementation is needed to improve medical practice and diagnosis.

Effect of Silencing subolesin and enolase impairs gene expression, engorgement and reproduction in Haemaphysalis longicornis (Acari: Ixodidae) ticks

  • Md. Samiul Haque;Mohammad Saiful Islam;Myung-Jo You
    • Journal of Veterinary Science
    • /
    • v.25 no.3
    • /
    • pp.43.1-43.13
    • /
    • 2024
  • Importance: Haemaphysalis longicornis is an obligate blood-sucking ectoparasite that has gained attention due its role of transmitting medically and veterinary significant pathogens and it is the most common tick species in Republic of Korea. The preferred strategy for controlling ticks is a multi-antigenic vaccination. Testing the efficiency of a combination antigen is a promising method for creating a tick vaccine. Objective: The aim of the current research was to analyze the role of subolesin and enolase in feeding and reproduction of H. longicornis by gene silencing. Methods: In this study, we used RNA interference to silence salivary enolase and subolesin in H. longicornis. Unfed female ticks injected with double-stranded RNA targeting subolesin and enolase were attached and fed normally on the rabbit's ear. Real-time polymerase chain reaction was used to confirm the extent of knockdown. Results: Ticks in the subolesin or enolase dsRNA groups showed knockdown rates of 80% and 60% respectively. Ticks in the combination dsRNA (subolesin and enolase) group showed an 80% knockdown. Knockdown of subolesin and enolase resulted in significant depletion in feeding, blood engorgement weight, attachment rate, and egg laying. Silencing of both resulted in a significant (p < 0.05) reduction in tick engorgement, egg laying, egg hatching (15%), and reproduction. Conclusions and Relevance: Our results suggest that subolesin and enolase are an exciting target for future tick control strategies.

Quantitative PCR for Etiologic Diagnosis of Methicillin-Resistant Staphylococcus aureus Pneumonia in Intensive Care Unit

  • Kwon, Sun-Jung;Jeon, Tae-Hyeon;Seo, Dong-Wook;Na, Moon-Joon;Choi, Eu-Gene;Son, Ji-Woong;Yoo, Eun-Hyung;Park, Chang-Gyo;Lee, Hoi-Young;Kim, Ju-Ock;Kim, Sun-Young;Kang, Jae-Ku
    • Tuberculosis and Respiratory Diseases
    • /
    • v.72 no.3
    • /
    • pp.293-301
    • /
    • 2012
  • Background: Ventilator-associated pneumonia (VAP) requires prompt and appropriate treatment. Since methicillin-resistant Staphylococcus aureus (MRSA) is a frequent pathogen in VAP, rapid identification of it, is pivotal. Our aim was to evaluate the utility of quantitative polymerase chain reaction (qPCR) as a useful method for etiologic diagnoses of MRSA pneumonia. Methods: We performed qPCR for mecA, S. aureus-specific femA-SA, and S. epidermidis-specific femA-SE genes from bronchoalveolar lavage or bronchial washing samples obtained from clinically-suspected VAP. Molecular identification of MRSA was based on the presence of the mecA and femA-SA gene, with the absence of the femA-SE gene. To compensate for the experimental and clinical conditions, we spiked an internal control in the course of DNA extraction. We estimated number of colony-forming units per mL (CFU/mL) of MRSA samples through a standard curve of a serially-diluted reference MRSA strain. We compared the threshold cycle (Ct) value with the microbiologic results of MRSA. Results: We obtained the mecA gene standard curve, which showed the detection limit of the mecA gene to be 100 fg, which corresponds to a copy number of 30. We chose cut-off Ct values of 27.94 (equivalent to $1{\times}10^4$ CFU/mL) and 21.78 (equivalent to $1{\times}10^5$ CFU/mL). The sensitivity and specificity of our assay were 88.9% and 88.9% respectively, when compared with quantitative cultures. Conclusion: Our results were valuable for diagnosing and identifying pathogens involved in VAP. We believe our modified qPCR is an appropriate tool for the rapid diagnosis of clinical pathogens regarding patients in the intensive care unit.

Modulated Gene Expression of Toxoplasma gondii Infected Retinal Pigment Epithelial Cell Line (ARPE-19) via PI3K/Akt or mTOR Signal Pathway

  • Zhou, Wei;Quan, Juan-Hua;Gao, Fei-Fei;Ismail, Hassan Ahmed Hassan Ahmed;Lee, Young-Ha;Cha, Guang-Ho
    • Parasites, Hosts and Diseases
    • /
    • v.56 no.2
    • /
    • pp.135-145
    • /
    • 2018
  • Due to the critical location and physiological activities of the retinal pigment epithelial (RPE) cell, it is constantly subjected to contact with various infectious agents and inflammatory mediators. However, little is known about the signaling events in RPE involved in Toxoplasma gondii infection and development. The aim of the study is to screen the host mRNA transcriptional change of 3 inflammation-related gene categories, PI3K/Akt pathway regulatory components, blood vessel development factors and ROS regulators, to prove that PI3K/Akt or mTOR signaling pathway play an essential role in regulating the selected inflammation-related genes. The selected genes include PH domain and leucine- rich-repeat protein phosphatases (PHLPP), casein kinase2 (CK2), vascular endothelial growth factor (VEGF), pigment epithelium-derived factor (PEDF), glutamate-cysteine ligase (GCL), glutathione S-transferase (GST), and NAD(P)H: quinone oxidoreductase (NQO1). Using reverse transcription polymerase chain reaction (RT-PCR) and quantitative real-time reverse transcription polymerase chain reaction (qRT-PCR), we found that T. gondii up-regulates PHLPP2, $CK2{\beta}$, VEGF, GCL, GST and NQO1 gene expression levels, but down-regulates PHLPP1 and PEDF mRNA transcription levels. PI3K inhibition and mTOR inhibition by specific inhibitors showed that most of these host gene expression patterns were due to activation of PI3K/Akt or mTOR pathways with some exceptional cases. Taken together, our results reveal a new molecular mechanism of these gene expression change dependent on PI3K/Akt or mTOR pathways and highlight more systematical insight of how an intracellular T. gondii can manipulate host genes to avoid host defense.

Cloning and Expression Analysis of a Grape asr gene, VlASR Containing a Promoter Region. (포도 VIASR 유전자 프로모터의 분리 및 발현 분석)

  • Kihl, Joon-Yeong;Pyee, Jae-Ho
    • Journal of Life Science
    • /
    • v.17 no.8 s.88
    • /
    • pp.1157-1165
    • /
    • 2007
  • VvMSA, a grapevine ASR which is highly inducible by sugar and abscisic acid signals was previously shown to be a transcription factor for a hexose transporter gene VvHT1. We isolated a cDNA clone, VlASR which is regulated temporally during the grape berry development by ACP RT-PCR (annealing control primer reverse transcriptase-polymerase chain reaction) and it proved identical to VvMSA. RT-PCR and real-time PCR analyses revealed that the VlASR gene was expressed in berries at fruit set and that its expression increased as berries aged but decreased at the late ripening stage. In order to understand the regulatory mechanism of the asr gene, a genomic fragment was cloned from grapevine. The genomic DNA was 1375 bp long and a sugar box (sucrose box 3 and sucrose responsive element 1) was identified in the 611 bp upstream region of the open reading frame. Analysis of the VlASR promoter::reporter gene fusion demonstrated that this promoter was expressed in transgenic Arabidopsis even without sucrose treatment. This result suggests that the ASR/VvHT1-mediated sugar/ABA signaling, previously reported in grapevine, may not function in Arabidopsis which has no ASR homologue.

Respiratory Virus Detection Rate in Patients with Severe or Atypical Community-acquired Pneumonia (중증 또는 비전형적 지역사회획득 폐렴으로 입원한 환자에서 호흡기 바이러스의 검출 빈도)

  • Park, Ji-Won;Jung, Sun-Young;Eun, Hyuk-Soo;Cheon, Shin-Hye;Seong, Seok-Woo;Park, Dong-Il;Park, Myung-Rin;Park, Hee-Sun;Jung, Sung-Soo;Kim, Ju-Ock;Kim, Sun-Young;Lee, Jeong-Eun
    • Tuberculosis and Respiratory Diseases
    • /
    • v.71 no.5
    • /
    • pp.335-340
    • /
    • 2011
  • Background: Community-acquired pneumonia (CAP) is an important cause of morbidity and mortality throughout the world in all age groups. Viral causes of CAP are less well characterized than bacterial causes. We analyzed the characteristics of hospitalized patients with CAP who had a viral pathogen detected by multiplex polymerase chain reaction (PCR). Methods: Multiplex real-time PCR was performed for respiratory viruses in samples collected from 520 adults who developed CAP at Chungnam National University Hospital. Clinical, laboratory, and radiological features at presentation as well as other epidemiological data were analyzed. Results: Of 520 patients with CAP, a viral pathogen was detected in 60 (11.5%), and influenza A was the most common. The virus detection rate in patients with CAP was highest in November. Two or more pathogens were detected in 13 (21.7%) patients. Seven patients had severe disease and were administered in the intensive care unit. Most patients (49/60, 81.7%) had comorbidities. However, nine (15%) patients had no comorbidities, and their age was <60 years. The ground glass opacity pattern was the most common radiological feature. Seven (11.7%) patients died from CAP. Conclusion: Viral pathogens are commonly detected in patients with CAP, and a respiratory virus may be associated with the severity and outcome of pneumonia. Careful attention should be paid to the viral etiology in adult patients with CAP.