DOI QR코드

DOI QR Code

Effect of Silencing subolesin and enolase impairs gene expression, engorgement and reproduction in Haemaphysalis longicornis (Acari: Ixodidae) ticks

  • Md. Samiul Haque (Laboratory of Veterinary Parasitology, College of Veterinary Medicine and Bio-Safety Research Centre, Jeonbuk National University) ;
  • Mohammad Saiful Islam (Department of Medicine Surgery & Obstetrics, Faculty of Veterinary and Animal Science, Hajee Mohammad Danesh Science and Technology University) ;
  • Myung-Jo You (Laboratory of Veterinary Parasitology, College of Veterinary Medicine and Bio-Safety Research Centre, Jeonbuk National University)
  • Received : 2024.02.16
  • Accepted : 2024.05.04
  • Published : 2024.05.31

Abstract

Importance: Haemaphysalis longicornis is an obligate blood-sucking ectoparasite that has gained attention due its role of transmitting medically and veterinary significant pathogens and it is the most common tick species in Republic of Korea. The preferred strategy for controlling ticks is a multi-antigenic vaccination. Testing the efficiency of a combination antigen is a promising method for creating a tick vaccine. Objective: The aim of the current research was to analyze the role of subolesin and enolase in feeding and reproduction of H. longicornis by gene silencing. Methods: In this study, we used RNA interference to silence salivary enolase and subolesin in H. longicornis. Unfed female ticks injected with double-stranded RNA targeting subolesin and enolase were attached and fed normally on the rabbit's ear. Real-time polymerase chain reaction was used to confirm the extent of knockdown. Results: Ticks in the subolesin or enolase dsRNA groups showed knockdown rates of 80% and 60% respectively. Ticks in the combination dsRNA (subolesin and enolase) group showed an 80% knockdown. Knockdown of subolesin and enolase resulted in significant depletion in feeding, blood engorgement weight, attachment rate, and egg laying. Silencing of both resulted in a significant (p < 0.05) reduction in tick engorgement, egg laying, egg hatching (15%), and reproduction. Conclusions and Relevance: Our results suggest that subolesin and enolase are an exciting target for future tick control strategies.

Keywords

Acknowledgement

This research was supported by "Korea Institute of Planning and Evaluation for Technology in Food, Agriculture, Forestry and Fisheries (IPET) through Agriculture, Food and Rural Affairs Convergence Technologies Program for Educating Creative Global Leader, funded by Ministry of Agriculture, Food and Rural Affairs (MAFRA) (grant number: 320005-4)."

References

  1. Wikel SK. Ticks and tick-borne infections: complex ecology, agents, and host interactions. Vet Sci. 2018;5(2):60.
  2. Peter RJ, Van den Bossche P, Penzhorn BL, Sharp B. Tick, fly, and mosquito control--lessons from the past, solutions for the future. Vet Parasitol. 2005;132(3-4):205-215. https://doi.org/10.1016/j.vetpar.2005.07.004
  3. Rahman MK, Kim B, You M. Molecular cloning, expression and impact of ribosomal protein S-27 silencing in Haemaphysalis longicornis (Acari: Ixodidae). Exp Parasitol. 2020;209:107829.
  4. Vijayakumar S, Vaseeharan B, Malaikozhundan B, Divya M, Abhinaya M, Gobi N, et al. Ecotoxicity of Musa paradisiaca leaf extract-coated ZnO nanoparticles to the freshwater microcrustacean Ceriodaphnia cornuta. Limnologica. 2017;67:1-6. https://doi.org/10.1016/j.limno.2017.09.004
  5. Benelli G, Pavela R. Repellence of essential oils and selected compounds against ticks-a systematic review. Acta Trop. 2018;179:47-54. https://doi.org/10.1016/j.actatropica.2017.12.025
  6. Bhowmick B, Han Q. Understanding tick biology and its implications in anti-tick and transmission blocking vaccines against tick-borne pathogens. Front Vet Sci. 2020;7:319.
  7. Remil Linggatong G, Rika US, Masami M, Kozo F, Tetsuya T. RNA interference - a powerful functional analysis tool for studying tick biology and its control. In: Abdurakhmonov IY, editor. RNA Interference. Rijeka: IntechOpen; 2016.
  8. Heath A. Biology, ecology and distribution of the tick, Haemaphysalis longicornis Neumann (Acari: Ixodidae) in New Zealand. N Z Vet J. 2016;64(1):10-20. https://doi.org/10.1080/00480169.2015.1035769
  9. Teng KF, Jiang ZJ. Economic Insect Fauna of China Fasc 39 Acari: Ixodidae. Beijing: Science Press; 1991.
  10. Zhuang L, Du J, Cui XM, Li H, Tang F, Zhang PH, et al. Identification of tick-borne pathogen diversity by metagenomic analysis in Haemaphysalis longicornis from Xinyang, China. Infect Dis Poverty. 2018;7(1):45.
  11. Takahashi T, Maeda K, Suzuki T, Ishido A, Shigeoka T, Tominaga T, et al. The first identification and retrospective study of severe fever with thrombocytopenia syndrome in Japan. J Infect Dis. 2014;209(6):816-827. https://doi.org/10.1093/infdis/jit603
  12. Kim M, Kim JY, Yi MH, Lee IY, Yong D, Jeon BY, et al. Microbiome of Haemaphysalis longicornis tick in Korea. Korean J Parasitol. 2021;59(5):489-496. https://doi.org/10.3347/kjp.2021.59.5.489
  13. Simo L, Kazimirova M, Richardson J, Bonnet SI. The essential role of tick salivary glands and saliva in tick feeding and pathogen transmission. Front Cell Infect Microbiol. 2017;7:281.
  14. Kazimirova M, Jancinova V, Petrikova M, Takac P, Labuda M, Nosal' R. An inhibitor of thrombinstimulated blood platelet aggregation from the salivary glands of the hard tick Amblyomma variegatum (Acari: Ixodidae). Exp Appl Acarol. 2002;28(1-4):97-105. https://doi.org/10.1023/A:1025398100044
  15. Liu XY, de la Fuente J, Cote M, Galindo RC, Moutailler S, Vayssier-Taussat M, et al. IrSPI, a tick serine protease inhibitor involved in tick feeding and Bartonella henselae infection. PLoS Negl Trop Dis. 2014;8(7):e2993.
  16. Avilan L, Gualdron-Lopez M, Quinones W, Gonzalez-Gonzalez L, Hannaert V, Michels PA, et al. Enolase: a key player in the metabolism and a probable virulence factor of trypanosomatid parasites-perspectives for its use as a therapeutic target. Enzyme Res. 2011;2011:932549.
  17. Piast M, Kustrzeba-Wojcicka I, Matusiewicz M, Banas T. Molecular evolution of enolase. Acta Biochim Pol. 2005;52(2):507-513. https://doi.org/10.18388/abp.2005_3466
  18. Haque A, Ray SK, Cox A, Banik NL. Neuron specific enolase: a promising therapeutic target in acute spinal cord injury. Metab Brain Dis. 2016;31(3):487-495. https://doi.org/10.1007/s11011-016-9801-6
  19. de la Torre-Escudero E, Manzano-Roman R, Perez-Sanchez R, Siles-Lucas M, Oleaga A. Cloning and characterization of a plasminogen-binding surface-associated enolase from Schistosoma bovis. Vet Parasitol. 2010;173(1-2):76-84. https://doi.org/10.1016/j.vetpar.2010.06.011
  20. Diaz-Ramos A, Roig-Borrellas A, Garcia-Melero A, Lopez-Alemany R. α-Enolase, a multifunctional protein: its role on pathophysiological situations. J Biomed Biotechnol. 2012;2012:156795.
  21. Perez-Sanchez R, Oleaga A, Siles-Luca M, Diaz-Martin V, Torre-Escudero EDL, Hernandez-Gonzalez A, et al. Aplicacion de ecualizadores de proteinas para la identificacion de antigenos minoritarios de la saliva. Ornithodoros Moubata. 2010;5:143-145.
  22. Jarmey JM, Riding GA, Pearson RD, McKenna RV, Willadsen P. Carboxydipeptidase from Boophilus microplus: a "concealed" antigen with similarity to angiotensin-converting enzyme. Insect Biochem Mol Biol. 1995;25(9):969-974. https://doi.org/10.1016/0965-1748(95)00038-W
  23. de la Fuente J, Almazan C, Blas-Machado U, Naranjo V, Mangold AJ, Blouin EF, et al. The tick protective antigen, 4D8, is a conserved protein involved in modulation of tick blood ingestion and reproduction. Vaccine. 2006;24(19):4082-4095. https://doi.org/10.1016/j.vaccine.2006.02.046
  24. Kocan KM, Manzano-Roman R, de la Fuente J. Transovarial silencing of the subolesin gene in three-host ixodid tick species after injection of replete females with subolesin dsRNA. Parasitol Res. 2007;100(6):1411-1415. https://doi.org/10.1007/s00436-007-0483-1
  25. Rahman MK, Saiful Islam M, You M. Impact of subolesin and cystatin knockdown by RNA interference in adult female Haemaphysalis longicornis (Acari: ixodidae) on blood engorgement and reproduction. Insects. 2018;9(2):9.
  26. Tirloni L, Islam MS, Kim TK, Diedrich JK, Yates JR 3rd, Pinto AF, et al. Saliva from nymph and adult females of Haemaphysalis longicornis: a proteomic study. Parasit Vectors. 2015;8(1):338.
  27. Bullard RL, Williams J, Karim S. Temporal gene expression analysis and RNA silencing of single and multiple members of gene family in the lone star tick Amblyomma americanum. PLoS One. 2016;11(2):e0147966.
  28. Kocan KM, Blouin E, de la Fuente J. RNA interference in ticks. J Vis Exp 2011;(47):2474.
  29. Haimes J, Kelley M. Demonstration of a ΔΔCq Calculation Method to Compute Relative Gene Expression From qPCR Data. Waltham: Thermo Scientific; 2010, p 1.
  30. Rodriguez-Mallon A, Fernandez E, Encinosa PE, Bello Y, Mendez-Perez L, Ruiz LC, et al. A novel tick antigen shows high vaccine efficacy against the dog tick, Rhipicephalus sanguineus. Vaccine. 2012;30(10):1782-1789. https://doi.org/10.1016/j.vaccine.2012.01.011
  31. Ren S, Zhang B, Xue X, Wang X, Zhao H, Zhang X, et al. Salivary gland proteome analysis of developing adult female Haemaphysalis longicornis ticks: molecular motor and TCA cycle-related proteins play an important role throughout development. Parasit Vectors. 2019;12(1):613.
  32. Lee SH, Li J, Moumouni PF, Okado K, Zheng W, Liu M, et al. Subolesin vaccination inhibits blood feeding and reproduction of Haemaphysalis longicornis in rabbits. Parasit Vectors. 2020;13(1):478.
  33. Smith A, Guo X, de la Fuente J, Naranjo V, Kocan KM, Kaufman WR. The impact of RNA interference of the subolesin and voraxin genes in male Amblyomma hebraeum (Acari: ixodidae) on female engorgement and oviposition. Exp Appl Acarol. 2009;47(1):71-86. https://doi.org/10.1007/s10493-008-9195-1
  34. Lu P, Zhou Y, Yu Y, Cao J, Zhang H, Gong H, et al. RNA interference and the vaccine effect of a subolesin homolog from the tick Rhipicephalus haemaphysaloides. Exp Appl Acarol. 2016;68(1):113-126. https://doi.org/10.1007/s10493-015-9987-z
  35. Kocan KM, Zivkovic Z, Blouin EF, Naranjo V, Almazan C, Mitra R, et al. Silencing of genes involved in Anaplasma marginale-tick interactions affects the pathogen developmental cycle in Dermacentor variabilis. BMC Dev Biol. 2009;9(1):42.
  36. Zivkovic Z, Torina A, Mitra R, Alongi A, Scimeca S, Kocan KM, et al. Subolesin expression in response to pathogen infection in ticks. BMC Immunol. 2010;11(1):7.
  37. Haque MS, Islam MS, You MJ. Efficacy of recombinant enolase as a candidate vaccine against Haemaphysalis longicornis tick infestation in mice. Parasites Hosts Dis. 2023;61(4):439-448. https://doi.org/10.3347/PHD.23075
  38. Diaz-Martin V, Manzano-Roman R, Oleaga A, Encinas-Grandes A, Perez-Sanchez R. Cloning and characterization of a plasminogen-binding enolase from the saliva of the argasid tick Ornithodoros moubata. Vet Parasitol. 2013;191(3-4):301-314. https://doi.org/10.1016/j.vetpar.2012.09.019
  39. Xu XL, Yang H. Molecular cloning and expression analysis of enolase in the Rhipicephalus microplus (Acari: ixodidae). J Med Entomol. 2021;58(6):2540-2546. https://doi.org/10.1093/jme/tjab139
  40. Parizi LF, Reck J Jr, Oldiges DP, Guizzo MG, Seixas A, Logullo C, et al. Multi-antigenic vaccine against the cattle tick Rhipicephalus (Boophilus) microplus: a field evaluation. Vaccine. 2012;30(48):6912-6917. https://doi.org/10.1016/j.vaccine.2012.08.078
  41. de la Fuente J, Kocan KM. The impact of RNA interference in tick research. Pathogens. 2022;11(8):827.
  42. Xu XL, Cheng TY, Yang H. Enolase, a plasminogen receptor isolated from salivary gland transcriptome of the ixodid tick Haemaphysalis flava. Parasitol Res. 2016;115(5):1955-1964. https://doi.org/10.1007/s00436-016-4938-0
  43. Xavier MA, Brust FR, Waldman J, Macedo AJ, Juliano MA, da Silva Vaz I Jr, et al. Interfering with cholesterol metabolism impairs tick embryo development and turns eggs susceptible to bacterial colonization. Ticks Tick Borne Dis. 2021;12(6):101790.