• 제목/요약/키워드: Real-Time Polymerase Chain Reaction

검색결과 808건 처리시간 0.042초

Reverse Transcription Droplet Digital PCR을 활용한 Tomato Spotted Wilt Virus 검출 및 정량 (Application of Reverse Transcription Droplet Digital PCR for Detection and Quantification of Tomato Spotted Wilt Virus)

  • 이효정;박기범;한연수;정래동
    • 식물병연구
    • /
    • 제27권3호
    • /
    • pp.120-127
    • /
    • 2021
  • 식물 바이러스는 작물 수확량에 상당한 손실을 일으키고 작물 생산을 지속적으로 위협하여 세계 식량 안보에 심각한 위협이 된다. 그 중 tomato spotted wilt virus (TSWV)는 주로 원예작물을 감염시키는 가장 위협적인 식물 바이러스로 넓은 기주 범위를 가진다. Reverse-transcription quantitative real-time PCR (RT-qPCR)은 TSWV의 민감한 검출을 위해 널리 사용되고 있지만 표준화의 어려움으로 인해 유용성이 감소한다. 따라서 본 연구에서는 TSWV 검출을 위해 민감하고 정확한 reverse transcription droplet digital polymerase chain reaction (RT-ddPCR)을 확립하였다. TSWV 검출에 대한 RT-qPCR 및 RT-ddPCR의 민감도를 비교하였고, TSWV에 대한 RT-ddPCR의 특이성 분석은 고추에서 주로 발생하는 바이러스 및 음성 대조군에서 특이성을 확인한 결과 증폭되지 않았다. RT-ddPCR 및 RTqPCR에 의해 측정된 TSWV의 선형회귀곡선은 모두 높은 선형성을 나타냈지만, RT-ddPCR 분석이 10배 이상 더 민감하고 더 낮은 TSWV의 copy 수를 검출할 수 있었다. 종합적으로, 우리의 연구 결과는 RT-ddPCR이 TSWV 검출에 대해 높은 민감도와 특이성을 제공하고 낮은 농도의 현장 시료에서 TSWV 검출하는 데 적합하다는 것을 보여준다.

The effect of heat stress on frame switch splicing of X-box binding protein 1 gene in horse

  • Lee, Hyo Gun;Khummuang, Saichit;Youn, Hyun-Hee;Park, Jeong-Woong;Choi, Jae-Young;Shin, Teak-Soon;Cho, Seong-Keun;Kim, Byeong-Woo;Seo, Jakyeom;Kim, Myunghoo;Park, Tae Sub;Cho, Byung-Wook
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제32권8호
    • /
    • pp.1095-1103
    • /
    • 2019
  • Objective: Among stress responses, the unfolded protein response (UPR) is a well-known mechanism related to endoplasmic reticulum (ER) stress. ER stress is induced by a variety of external and environmental factors such as starvation, ischemia, hypoxia, oxidative stress, and heat stress. Inositol requiring enzyme $1{\alpha}$ ($IRE1{\alpha}$)-X-box protein 1 (XBP1) is the most conserved pathway involved in the UPR and is the main component that mediates $IRE1{\alpha}$ signalling to downstream ER-associated degradation (ERAD)- or UPR-related genes. XBP1 is a transcription factor synthesised via a novel mechanism called 'frame switch splicing', and this process has not yet been studied in the horse XBP1 gene. Therefore, the aim of this study was to confirm the frame switch splicing of horse XBP1 and characterise its dynamics using Thoroughbred muscle cells exposed to heat stress. Methods: Primary horse muscle cells were used to investigate heat stress-induced frame switch splicing of horse XBP1. Frame switch splicing was confirmed by sequencing analysis. XBP1 amino acid sequences and promoter sequences of various species were aligned to confirm the sequence homology and to find conserved cis-acting elements, respectively. The expression of the potential XBP1 downstream genes were analysed by quantitative real-time polymerase chain reaction. Results: We confirmed that splicing of horse XBP1 mRNA was affected by the duration of thermal stress. Twenty-six nucleotides in the mRNA of XBP1 were deleted after heat stress. The protein sequence and the cis-regulatory elements on the promoter of horse XBP1 are highly conserved among the mammals. Induction of putative downstream genes of horse XBP1 was dependent on the duration of heat stress. We confirmed that both the mechanisms of XBP1 frame switch splicing and various binding elements found in downstream gene promoters are highly evolutionarily conserved. Conclusion: The frame switch splicing of horse XBP1 and its dynamics were highly conserved among species. These results facilitate studies of ER-stress in horse.

수은 노출에 따른 기수산 물벼룩의 대사 관련 유전자의 발현 양상 (Transcriptional Modulation of Metabolism-Related Genes in Brackish Water Flea Diaphanosoma celebensis Exposed to Mercury )

  • 전민정;유제원;이영미
    • 한국해양생명과학회지
    • /
    • 제7권2호
    • /
    • pp.145-153
    • /
    • 2022
  • 수은은 생물 축적과 먹이사슬을 통한 생물 농축되며, 미량에서도 유해한 영향을 나타내기 때문에 해양 환경 내에서 중요한 문제가 되고 있다. 그러나 해양 소형 갑각류에 대한 수은의 생물 영향은 다른 금속에 비해 연구가 미흡하다. 본 연구에서는 기수산 물벼룩 Diaphanosoma celebensis을 아치사 농도(0.2, 0.4, 0.8 ㎍/l)의 무기 수은(HgCl2)에 48시간 노출시킨 후, 대사 관련 유전자의 발현 양상을 조사하였다. 해독효소 유전자 5종(cytochrome P450; cyp360A1, cyp361A1, cyp4AP3, cyp4C122, cyp370C5)과 소화효소 6종(alpha amylase (AMY), alpha amylase related protein (AMY-like), trypsin (TRYP), chymotrypsin-like protein (CHY), lipase (LIP), pancreatic lipase-related protein (PLRP))의 유전자 발현을 quantitative real time reverse transcription polymerase chain reaction (qRT-PCR)을 이용하여 분석하였다. Cyp 유전자의 경우 clan2에 속하는 cyp370C5와 clan4에 속하는 cyp4AP3 유전자의 발현이 농도 의존적으로 유의하게 증가하였다. 한편 소화효소 유전자 중에서는 단백질 소화와 관련 있는 TRYP 유전자의 발현이 농도 의존적으로 증가하였다. 이러한 결과는 cyp370C5와 cyp4AP3가 수은 독성을 해독하는 과정에서 중요한 역할을 담당할 것으로 보이며, 수은이 소화효소 유전자의 발현을 조절함으로써 에너지 대사에 영향을 미칠 수 있음을 제시한다. 본 연구는 해양 소형 갑각류에서 수은에 대한 분자 수준의 영향을 이해하는데 도움이 될 것이다.

Potential Risk of Choline Alfoscerate on Isoflurane-Induced Toxicity in Primary Human Astrocytes

  • Hyun Jung Lee;Hye Rim Cho;Minji Bang;Yeo Song Lee; Youn Jin Kim; Kyuha Chong
    • Journal of Korean Neurosurgical Society
    • /
    • 제67권4호
    • /
    • pp.418-430
    • /
    • 2024
  • Objective : Isoflurane, a widely used common inhalational anesthetic agent, can induce brain toxicity. The challenge lies in protecting neurologically compromised patients from neurotoxic anesthetics. Choline alfoscerate (L-α-Glycerophosphorylcholine, α-GPC) is recognized for its neuroprotective properties against oxidative stress and inflammation, but its optimal therapeutic window and indications are still under investigation. This study explores the impact of α-GPC on human astrocytes, the most abundant cells in the brain that protect against oxidative stress, under isoflurane exposure. Methods : This study was designed to examine changes in factors related to isoflurane-induced toxicity following α-GPC administration. Primary human astrocytes were pretreated with varying doses of α-GPC (ranging from 0.1 to 10.0 µM) for 24 hours prior to 2.5% isoflurane exposure. In vitro analysis of cell morphology, water-soluble tetrazolium salt-1 assay, quantitative real-time polymerase chain reaction, proteome profiler array, and transcriptome sequencing were conducted. Results : A significant morphological damage to human astrocytes was observed in the group that had been pretreated with 10.0 mM of α-GPC and exposed to 2.5% isoflurane. A decrease in cell viability was identified in the group pretreated with 10.0 µM of α-GPC and exposed to 2.5% isoflurane compared to the group exposed only to 2.5% isoflurane. Quantitative real-time polymerase chain reaction revealed that mRNA expression of heme-oxygenase 1 and hypoxia-inducible factor-1α, which were reduced by isoflurane, was further suppressed by 10.0 µM α-GPC pretreatment. The proteome profiler array demonstrated that α-GPC pretreatment influenced a variety of factors associated with apoptosis induced by oxidative stress. Additionally, transcriptome sequencing identified pathways significantly related to changes in isoflurane-induced toxicity caused by α-GPC pretreatment. Conclusion : The findings suggest that α-GPC pretreatment could potentially enhance the vulnerability of primary human astrocytes to isoflurane-induced toxicity by diminishing the expression of antioxidant factors, potentially leading to amplified cell damage.

Comprehensive Evaluation of the Anti-Helicobacter pylori Activity of Scutellariae Radix

  • Lee, Ba Wool;Park, Il-Ho;Yim, Dongsool;Choi, Sung Sook
    • Natural Product Sciences
    • /
    • 제23권1호
    • /
    • pp.46-52
    • /
    • 2017
  • The aim of this study was to evaluate the anti-Helicobacter pylori activity of fractions and major aglycon compounds (baicalein, chrysin, oroxylin A, wogonin) of Scutellariae Radix. Minimum inhibitory concentration (MIC) measurement, DPPH radical-scavenging assay, DNA protection assay, and urease inhibition analysis were performed. The ethyl acetate (EtOAc) fraction showed the potent anti-Helicobacter activity, and therefore, compounds in the EtOAc fraction were subjected to further assay. The MICs of chrysin, oroxylin A, and wogonin against Helicobacter pylori 26695 were 6.25, 12.5 and $25{\mu}g/mL$, respectively. Baicalein exhibited the most effective DPPH radical-scavenging activity. DNA protection using Fenton reaction, chrysin, oroxylin A, and wogonin showed effective DNA protective effect. This result was also confirmed by quantitative real-time polymerase chain reaction (qRT-PCR). Regarding Jack bean urease (0.5 mg/mL, 50 unit/mg) inhibition, 20 mM ofbaicalein and chrysin inhibited urease activity by 88.2% and 72.5%, respectively.

Ginsenoside Rg3 suppresses mast cell-mediated allergic inflammation via mitogen-activated protein kinase signaling pathway

  • Kee, Ji-Ye;Hong, Seung-Heon
    • Journal of Ginseng Research
    • /
    • 제43권2호
    • /
    • pp.282-290
    • /
    • 2019
  • Background: Ginsenoside Rg3 (G-Rg3) is the major bioactive ingredient of Panax ginseng and has many pharmacological effects, including antiadipogenic, antiviral, and anticancer effects. However, the effect of G-Rg3 on mast cell-mediated allergic inflammation has not been investigated. Method: The antiallergic effects of G-Rg3 on allergic inflammation were evaluated using the human and rat mast cell lines HMC-1 and RBL-2H3. Antiallergic effects of G-Rg3 were detected by measuring cyclic adenosine monophosphate (cAMP), detecting calcium influx, and using real-time reverse transcription polymerase chain reaction, enzyme-linked immunosorbent assay, Western blotting, and in vivo experiments. Results: G-Rg3 decreased histamine release from activated mast cells by enhancing cAMP levels and calcium influx. Proinflammatory cytokine production was suppressed by G-Rg3 treatment via regulation of the mitogen-activated protein kinases/nuclear factor-kappa B and receptor-interacting protein kinase 2 (RIP2)/caspase-1 signaling pathway in mast cells. Moreover, G-Rg3 protected mice against the IgE-mediated passive cutaneous anaphylaxis reaction and compound 48/80-induced anaphylactic shock. Conclusion: G-Rg3 may serve as an alternative therapeutic agent for improving allergic inflammatory disorders.

식품에 인위접종된 Salmonella Typhimurium, Listeria monocytogenes, Cronobacter sakazakii의 신속검출을 위한 Real-time PCR과 Loop-mediated isothermal amplification 비교 (Comparison of Loop-Mediated Isothermal Amplification and Real-Time PCR for the Rapid Detection of Salmonella Typhimurium, Listeria monocytogenes and Cronobacter sakazakii Artificially Inoculated in Foods)

  • 김진희;오세욱
    • 한국식품위생안전성학회지
    • /
    • 제34권2호
    • /
    • pp.135-139
    • /
    • 2019
  • 식품에 존재하는 병원균을 신속검출하기 위한 방법으로 LAMP와 real-time PCR 방법을 비교 평가 하였다. S. Typhimurium, L. monocytogenes, C. sakazakii의 3종에 대해 식품공전에서 권고하는 식품 종류를 선별하여 민감도를 분석하였다. S. Typhimurium에서는 11종의 식품(햄, 닭가슴살, 계란, 돼지고기, 소고기, 오리고기, 액상음료, 샐러드, 콘프레이크, 초콜릿, 사료)중 4종(햄, 돼지고기, 시리얼, 사료)에서 LAMP보다 real-time PCR에서 검출 민감도가 10배 이상 더 높았고, 6종(닭가슴살, 계란, 소고기, 오리고기, 음료, 샐러드)에서는 real-time PCR과 비슷한 수준을 그리고 초콜릿에서는 real-time PCR로는 검출되지 않았으며 LAMP로만 검출되는 결과가 나타났다. L. monocytogenes와 C. sakazakii에서는 9종 모두에서 LAMP보다 real-time PCR에서 검출 민감도가 더 높았다. 또한 L. monocytogenes에서 LAMP의 검출 민감도가 S. Typhimurium과 C. sakazakii 보다 10배 이상 낮았다. 3M MDS의 검출한계 향상을 위해 변형된 3M MDS의 민감도는 기존대비 10배 이상 증가되었다. 따라서 식품에 존재하는 병원균의 검출을 위해 식품의 구성성분에 따라 LAMP와 real-time PCR를 적절히 선택하는 것이 바람직할 것으로 생각되었다. 한편, 농축 방법을 이용해 LAMP방법의 민감도를 향상시킬 수 있음을 알 수 있었다.

구강편평상피암종에서 상피성장인자 수용체의 과발현과 K-ras 유전자 변이 (Epidermal growth factor receptor overexpression and K-ras mutation detection in the oral squamous cell carcinoma)

  • 문병출;한세진;정동준;김경욱
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • 제37권5호
    • /
    • pp.396-402
    • /
    • 2011
  • Introduction: Epidermal growth factor is a single-chain polypeptide consisting of 53 amino acids with potent mitogenic activity that stimulates the proliferation of a range of normal and neoplastic cells through an interaction with its specific receptor (epidermal growth factor receptor, EGFR). This interaction plays a key role in tumor progression including the induction of tumor cell proliferation. An increased EGFR copy number have been associated with a favorable response to EGFR tyrosine kinase inhibitors therapy. In contrast, K-ras mutations tend to predict a poor response to such therapy. The aim of this study was to determine the correlation between the clinicopathological factors and the up-regulation of EGFR expression and Kras mutations in oral squamous cell carcinoma. Materials and Methods: This study examined the immunohistochemical staining of EGFR, K-ras mutation detection with peptide nucleic acid (PNA)-based real-time polymerase chain reaction (PCR) clamping in 20 specimens from 20 patients with oral squamous cell carcinoma. Results: 1. In the immunohistochemical study of poorly differentiated and invasive oral squamous cell carcinoma, a high level of EGFR staining was observed. The correlation between immunohistochemical EGFR expression and histological differentiation, as well as the tumor size of the specimens was significant (Pearson correlation analysis, significance [r] >0.5, P<0.05). 2. In PNA-based real-time PCR clamping analysis, a K-ras mutation was not detected in all specimens. Conclusion: These findings suggest that the up-regulation of the EGFR may play a role in the progression and invasion of oral squamous cell carcinoma that is, independent of a K-ras mutation.

A simple and rapid method for detection of single nucleotide variants using tailed primer and HRM analysis

  • Hyeonguk Baek;Inchul, Choi
    • 한국동물생명공학회지
    • /
    • 제38권4호
    • /
    • pp.209-214
    • /
    • 2023
  • Background: Single nucleotide polymorphisms (SNPs) are widely used genetic markers with applications in human disease diagnostics, animal breeding, and evolutionary studies, but existing genotyping methods can be labor-intensive and costly. The aim of this study is to develop a simple and rapid method for identification of a single nucleotide change. Methods: A modified Polymerase Chain Reaction Amplification of Multiple Specific Alleles (PAMSA) and high resolution melt (HRM) analysis was performed to discriminate a bovine polymorphism in the NCAPG gene (rs109570900, 1326T > G). Results: The inclusion of tails in the primers enabled allele discrimination based on PCR product lengths, detected through agarose gel electrophoresis, successfully determining various genotypes, albeit with some time and labor intensity due to the use of relatively costly high-resolution agarose gels. Additionally, high-resolution melt (HRM) analysis with tailed primers effectively distinguished the GG genotype from the TT genotype in bovine muscle cell lines, offering a reliable way to distinguish SNP polymorphisms without the need for time-consuming AS-PCR. Conclusions: Our experiments demonstrated the importance of incorporating unique mismatched bases in the allele-specific primers to prevent cross-amplification by fragmented primers. This efficient and cost-effective method, as presented here, enables genotyping laboratories to analyze SNPs using standard real-time PCR.

Development of Real-time PCR Assay Based on Hydrolysis Probe for Detection of Epichloë spp. and Toxic Alkaloid Synthesis Genes

  • Lee, Ki-Won;Woo, Jae Hoon;Song, Yowook;Rahman, Md Atikur;Lee, Sang-Hoon
    • 한국초지조사료학회지
    • /
    • 제42권3호
    • /
    • pp.201-207
    • /
    • 2022
  • Fescues, which are widely cultivated as grasses and forages around the world, are often naturally infected with the endophyte, Epichloë. This fungus, transmitted through seeds, imparts resistance to drying and herbivorous insects in its host without causing any external damage, thereby contributing to the adaptation of the host to the environment and maintaining a symbiosis. However, some endophytes, such as E. coenophialum synthesize ergovaline or lolitrem B, which accumulate in the plant and impart anti-mammalian properties. For example, when livestock consume excessive amounts of grass containing toxic endophytes, problems associated with neuromuscular abnormalities, such as convulsions, paralysis, high fever, decreased milk production, reproductive disorders, and even death, can occur. Therefore, pre-inoculation with non-toxic endogenous fungi or management with endophyte-free grass is important in preventing damage to livestock and producing high-quality forage. To date, the diagnosis of endophytes has been mainly performed by observation under a microscope following staining, or by performing an immune blot assay using a monoclonal antibody. Recently, the polymerase chain reaction (PCR)-based molecular diagnostic method is gaining importance in the fields of agriculture, livestock, and healthcare given the method's advantages. These include faster results, with greater accuracy and sensitivity than those obtained using conventional diagnostic methods. For the diagnosis of endophytes, the nested PCR method is the only available option developed; however, it is limited by the fact that the level of toxic alkaloid synthesis cannot be estimated. Therefore, in this study, we aimed to develop a triplex real-time PCR diagnostic method that can determine the presence or absence of endophyte infection using DNA extracted from seeds within 1 h, while simultaneously detecting easD and LtmC genes, which are related to toxic alkaloid synthesis. This new method was then also applied to real field samples.